ên cạnh việc hoàn thiện các phép đo khảo sát tính chất từ ở nhiệt độ thấp
của mẫu TbIG và nghiên cứu sâu hơn trên các vật liệu pherit ganet đất hiếm
khác thì vấn đề nghiên cứu sự pha tạp các nguyên tố khác nhau cho các ion
Fe và đất hiếm và ảnh hưởng của chúng lên các tính chất vật lý của các hạt
nano pherit cần được tiếp tục nghiên cứu.
                
              
                                            
                                
            
 
            
                 146 trang
146 trang | 
Chia sẻ: toanphat99 | Lượt xem: 2650 | Lượt tải: 0 
              
            Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu chế tạo và tính chất từ của pherit ganet R3Fe5O12 (R = Y, Gd, Tb, Dy, Ho) kích thước nanomet, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
c hạt pherit ganet dysposi (DyIG), holmi (HoIG) và terbi (TbIG) 
kích thước nanomet, được chế tạo bằng phương pháp sol-gel với quy trình công 
nghệ tương tự như mẫu YIG và GdIG, như đã nêu trong chương 2, 3 và 4. Kết 
quả nghiên cứu sẽ được trình bày dưới đây tập trung vào cấu trúc, kích thước và 
tính chất từ của các mẫu hạt nano, trong đó, các tính chất từ được khảo sát cụ thể 
qua các giá trị mômen từ, độ cảm từ trường cao, nhiệt độ Curie, nhiệt độ bù trừ, 
lực kháng từ và hằng số dị hướng. 
5.1 Cấu trúc, kích thƣớc và thành phần các hạt nano RIG (R = 
Tb, Dy, Ho) 
Các hạt pherit ganet đất hiếm RIG (R = Tb, Dy, Ho) thu được sau khi ủ 
nhiệt ở 800oC trong 5 giờ. Cấu trúc pha của các mẫu hạt được nghiên cứu qua 
phổ nhiễu xạ tia X như chỉ ra trên hình 5.1. 
20 30 40 50 60 70
(6
6
4
)
(8
4
2
)
(6
4
2
)
(6
4
0
)
TbIG
HoIG
DyIG
2 theta (
o
)
(3
2
1
)
(4
0
0
)
(4
2
0
)
(4
2
2
)
(4
3
1
)
(5
2
1
)
(4
4
4
)
(8
0
0
)
C
-
ê
n
g
 ®
é
 (
®
.v
.t
.y
)
Hình 5.1 Giản đồ nhiễu xạ tia X của các mẫu hạt RIG (R = Tb, Dy, Ho) 
Phổ nhiễu xạ tia X của các mẫu hạt được so sánh với các phổ chuẩn của 
mẫu khối TbIG là 01-085-0545, của mẫu DyIG là 00-023-0237 và của HoIG là 
00-023-0282. Có thể thấy, các mẫu đều có cấu trúc lập phương. Trên phổ nhiễu 
xạ tia X không thấy sự xuất hiện của các pha tạp như hematite ( - Fe2O3) hoặc 
 97 
orthoferrite RFeO3. Các giá trị hằng số mạng a tính toán được theo công thức 
(2.3) của RIG (R = Tb, Dy, Ho) lần lượt là 12,42Å; 12,41Å và 12,35Å như chỉ ra 
trong bảng 5.1. Các giá trị này phù hợp với các giá trị hằng số mạng của mẫu 
khối tương ứng [3]. 
Hình dạng các hạt nghiên cứu qua ảnh FESEM được chỉ ra như trên hình 
5.2a, 5.2c, 5.2e. Các hạt này có xu hướng kết đám lại với nhau. Kích thước các 
hạt trên ảnh FESEM phân bố trong khoảng 90 – 110 nm. Tuy nhiên, sau khi rung 
siêu âm và phân tán cồn, ảnh TEM cho thấy kích thước trung bình của các hạt 
này khoảng 40 nm. Như vậy, kích thước hạt thu được qua ảnh TEM phù hợp với 
kích thước tinh thể trung bình dXRD tính toán được qua giản đồ nhiễu xạ tia X. 
Hình ảnh hạt quan sát được trên ảnh FESEM là hình ảnh của 2-3 hạt nhỏ như 
quan sát thấy trong ảnh TEM kết đám với nhau nên có kích thước rất lớn so với 
dXRD. 
Bảng 5.1. Các thông số cấu trúc của các hạt nano DyIG, HoIG, TbIG trong 
đó hằng số mạng a, kích thước tinh thể trung bình d
XRD
, mật độ khối lượng  
thu được từ giản đồ nhiễu xạ tia X, kích thước hạt trung bình d
FESEM, dTEM 
quan sát từ ảnh FESEM và TEM. 
Mẫu hạt nano TbIG DyIG HoIG 
a (Å) 12,42 12,41 12,35 
d
XRD 
(nm) 37 38 41 
d
FESEM
 (nm) 110 90 100 
d
TEM
 (nm) 40 38 40 
 (g/cm
3
) 6,57 6,66 6,81 
Thành phần và tỉ lệ nguyên tử của các mẫu hạt nano DyIG và HoIG được 
nghiên cứu qua phổ tán xạ năng lượng EDX như trên hình 5.3. Kết quả phân tích 
chỉ ra trong bảng 5.2 cho thấy tỉ lệ nguyên tử [R] : [Fe] trên cả hai mẫu hạt nano 
gần với tỉ lệ nguyên tử tính theo công thức danh định. Tuy vậy, tỉ lệ [R] : [Fe] 
theo phổ EDX cả hai mẫu có sự tăng (DyIG) và giảm (HoIG) khoảng 3,5% so 
 98 
với tỉ lệ tính theo công thức danh định. Điều này có thể sẽ dẫn đến sự bất đồng 
nhất về thành phần của của các hạt. 
Hình 5.2 Ảnh FESEM và TEM của các hạt nano DyIG (a,b), HoIG (c,d) và TbIG 
(e, f) 
 99 
Hình 5.3 Phổ tán sắc năng lượng EDX của các hạt nano DyIG (a) và HoIG (b) 
Bảng 5.2. Tỉ lệ thành phần nguyên tử trong mẫu DyIG và HoIG qua phổ 
EDX so sánh với công thức danh định 
 Công thức danh định Phổ EDX 
 Mẫu DyIG 
% nguyên tử Dy 15 14,48 
% nguyên tử Fe 25 20,7 
Tỉ lệ nguyên tử [Dy] : [Fe] 0,375 : 0,625 0,41 : 0,59 
 Mẫu HoIG 
% nguyên tử Ho 15 14,59 
% nguyên tử Fe 25 28,52 
Tỉ lệ nguyên tử [Ho] : [Fe] 0,375 : 0,625 0,34 : 0,66 
5.2 Tính chất từ của các hạt nano RIG (R = Dy, Tb, Ho) 
Các đường cong từ trễ M(H) của các mẫu hạt nano DyIG, HoIG và TbIG 
được khảo sát từ 5 K đến trên nhiệt độ Curie như trên hình 5.4 – 5.10, trong đó 
Tỉ lệ nguyên tử 
Dy 14,48 
Fe 20,7 
O 64,82 
Tỉ lệ nguyên tử 
Ho 14,59 
Fe 28,52 
O 56,89 
 100 
các đường cong từ trễ ở nhiệt độ thấp được khảo sát chi tiết với hai mẫu DyIG và 
HoIG. Ở vùng từ trường khảo sát, các mẫu hạt nano này chưa bão hòa từ. Các 
mẫu thể hiện độ cảm từ lớn ở từ trường cao ở các nhiệt độ khác nhau. Mômen từ 
tự phát Ms được xác định bằng cách ngoại suy tuyến tính về từ trường bằng 0. 
Các tính chất từ của mẫu được nghiên cứu qua các đại lượng như mômen từ tự 
phát, nhiệt độ Curie, nhiệt độ bù trừ, độ cảm từ ở từ trường cao, lực kháng từ và 
hằng số dị hướng. 
5.2.1 Mômen từ tự phát, nhiệt độ Curie và nhiệt độ bù trừ 
Mômen từ tự phát Ms phụ thuộc nhiệt độ của mẫu hạt nano DyIG, HoIG và 
TbIG được thể hiện trên hình 5.11. Các giá trị Ms giảm dần từ vùng nhiệt độ gần 
0 K và bằng 0 ở nhiệt độ bù trừ Tcomp. Nhiệt độ tăng lên, giá trị Ms tăng dần và 
sau đó lại giảm về 0 ở nhiệt độ Curie TC. Các giá trị nhiệt độ bù trừ Tcomp và TC 
của các hạt nano DyIG, HoIG và TbIG so sánh với mẫu khối [3] được chỉ ra 
trong bảng 5.3. Các giá trị trong bảng cho thấy nhiệt độ Tcomp của mẫu hạt nano 
bằng với mẫu khối trong khi nhiệt độ Curie TC thấp hơn 1-2 độ so với mẫu khối. 
Bảng 5.3 Các thông số từ của các hạt nano DyIG, HoIG và TbIG 
Mẫu DyIG HoIG TbIG 
TC (K) 
mẫu khối 552 558 568 
mẫu hạt nano 550 557 567 
Tcomp (K) 
mẫu khối 220 137 246 
mẫu hạt nano 220 137 246 
Ms (5K) 
(B) 
mẫu khối 15,9 13,6 15,5 
mẫu hạt nano 12,4 11,4 - 
Ms (300K) 
(B ) 
mẫu khối 4,48 8,67 2,82 
mẫu hạt nano 4,48 8,61 2,29 
 101 
-20 -10 0 10 20
-90
-60
-30
0
30
60
90
-2000 -1000 0 1000 2000
-50
0
50
M
 (
e
m
u
/g
)
H (Oe)
Dy
3
Fe
5
O
12
T = 5 K
M
 (
e
m
u
/g
)
H (kOe)
-20 -10 0 10 20
-80
-40
0
40
80
-1000 0 1000
-60
-40
-20
0
20
40
60
M
 (
e
m
u
/g
)
H (Oe)
Dy
3
Fe
5
O
12
T = 25 K
M
 (
e
m
u
/g
)
H (kOe)
-20 -10 0 10 20
-60
-30
0
30
60
-1000 -500 0 500 1000
-40
-20
0
20
40
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Dy
3
Fe
5
O
12
T = 50 K
-20 -10 0 10 20
-40
-20
0
20
40
-1000 -500 0 500 1000
-20
0
20
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Dy
3
Fe
5
O
12
T = 75 K
-20 -10 0 10 20
-40
-20
0
20
40
-1000 -500 0 500 1000
-20
-10
0
10
20
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Dy
3
Fe
5
O
12
T = 100 K
-20 -10 0 10 20
-20
-10
0
10
20
-1000 -500 0 500 1000
-10
0
10
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Dy
3
Fe
5
O
12
T = 125 K
Hình 5.4. Các đường cong từ trễ ở nhiệt độ 5 K; 25 K; 50 K; 75 K, 100 K và 125 
K của mẫu hạt nano DyIG. Hình nhỏ biểu diễn phần đường trễ ở quanh gốc tọa 
độ. 
 102 
-20 -10 0 10 20
-15
-10
-5
0
5
10
15
-1000 -500 0 500 1000
-6
-3
0
3
6
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Dy
3
Fe
5
O
12
T = 150 K
-20 -10 0 10 20
-10
-5
0
5
10
-1000 0 1000
-4
-2
0
2
4
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Dy
3
Fe
5
O
12
T = 175 K
-20 -10 0 10 20
-6
-3
0
3
6
-2000 -1000 0 1000 2000
-2
-1
0
1
2
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Dy
3
Fe
5
O
12
T = 200 K
-60 -40 -20 0 20 40 60
-10
-5
0
5
10
-2000 -1000 0 1000 2000
-1.0
-0.5
0.0
0.5
1.0
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Dy
3
Fe
5
O
12
T = 215 K
-20 -10 0 10 20
-4
-2
0
2
4
-2000 -1000 0 1000 2000
-0.3
0.0
0.3
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Dy
3
Fe
5
O
12
T = 225 K
-20 -10 0 10 20
-6
-3
0
3
6
-1000 -500 0 500 1000
-3
-2
-1
0
1
2
3
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Dy
3
Fe
5
O
12
T = 250 K
Hình 5.5. Các đường cong từ trễ ở nhiệt độ 150 K, 175 K, 200 K, 215 K, 225 K 
và 250 K của mẫu hạt nano DyIG. Hình nhỏ biểu diễn phần đường trễ ở quanh 
gốc tọa độ. 
 103 
0 2 4 6 8 10
0
2
4
6
M
 (
e
m
u
/g
)
H (kOe)
 300K
 350K
 400K
 450K
 500K
 525K
Dy
3
Fe
5
O
12
Hình 5.6. Các đường cong từ hóa ở nhiệt độ 300 K 525 K của mẫu hạt nano 
DyIG 
-20 -10 0 10 20
-60
-30
0
30
60
-2000 -1000 0 1000 2000
-60
-30
0
30
60
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Ho
3
Fe
5
O
12
T = 5 K
-20 -10 0 10 20
-60
-30
0
30
60
-2000 -1000 0 1000 2000
-40
0
40
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Ho
3
Fe
5
O
12
T = 25 K
Hình 5.7 Các đường cong từ trễ ở nhiệt độ 5 K, 25 K của mẫu hạt nano HoIG. 
Hình nhỏ biểu diễn phần đường trễ ở quanh gốc tọa độ. 
 104 
-20 -10 0 10 20
-40
-20
0
20
40
-1000 -500 0 500 1000
-30
-20
-10
0
10
20
30
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Ho
3
Fe
5
O
12
T = 50 K
-20 -10 0 10 20
-20
0
20
-1000 -500 0 500 1000
-20
-10
0
10
20
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Ho
3
Fe
5
O
12
T = 75 K
-20 -10 0 10 20
-10
0
10
-1000 -500 0 500 1000
-6
-3
0
3
6
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Ho
3
Fe
5
O
12
T = 100 K
-20 -10 0 10 20
-8
-4
0
4
8
-1000 -500 0 500 1000
-3
-2
-1
0
1
2
3
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Ho
3
Fe
5
O
12
T = 125 K
-60 -40 -20 0 20 40 60
-10
0
10
-400 -200 0 200 400
-0.4
-0.2
0.0
0.2
0.4
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (Oe)
Ho
3
Fe
5
O
12
T = 136,5 K
-20 -10 0 10 20
-8
-6
-4
-2
0
2
4
6
8
-1000 -500 0 500 1000
-2
-1
0
1
2
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Ho
3
Fe
5
O
12
T = 150 K
Hình 5.8. Các đường cong từ trễ ở nhiệt độ 50 K,75 K, 100 K, 125 K, 136,5 K và 
150 K của mẫu hạt nano HoIG. Hình nhỏ biểu diễn phần đường trễ ở quanh gốc 
tọa độ. 
 105 
-20 -10 0 10 20
-10
0
10
-400 -200 0 200 400
-6
-3
0
3
6
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Ho
3
Fe
5
O
12
T = 200 K
-20 -10 0 10 20
-10
0
10
-200 0 200
-4
-2
0
2
4
M
 (
e
m
u
/g
)
H (Oe)
M
 (
e
m
u
/g
)
H (kOe)
Ho
3
Fe
5
O
12
T = 250 K
0 2 4 6 8 10
0
2
4
6
8
10
M
 (
e
m
u
/g
)
H (kOe)
 300 K
 350 K
 400 K
 450 K
 500 K
 525 K
Hình 5.9. Các đường cong từ trễ ở nhiệt độ 200 K, 250 K và các đường từ hóa ở 
nhiệt độ 300 K - 525 K của mẫu hạt nano HoIG 
 106 
0 2 4 6 8 10
0
2
4
6
8
 553 K
 493 K
 453 K
M
 (
e
m
u
/g
)
H (kOe)
 393 K
 333 K
 287 K
Hình 5.10 Các đường cong từ hoá của mẫu hạt nano TbIG ở các nhiệt độ từ 77 
K - 553 K 
 107 
0 100 200 300 400 500 600
0
4
8
12
0 100 200 300 400 500 600
0
4
8
12
16
0 100 200 300 400 500 600
0
4
8
12
16
 MÉu h¹t
 MÉu khèi 
(b)
M
s
 (
B
/f
. 
u
.)
(a)
M
s
 (
B
/f
.u
)
M
s
 (
B
/f
.u
)
M
s
 (
B
/f
.u
)
T (K)
(c)
Hình 5.11 Sự phụ thuộc nhiệt độ của mômen từ tự phát của các mẫu hạt nano 
DyIG (a), HoIG (b) và TbIG (c) so sánh với mẫu khối tương ứng 
Ở 5 K, mômen từ Ms của các mẫu hạt nano DyIG và HoIG tương ứng bằng 
78% và 84% so với mẫu khối. Do có sự phù hợp tốt về các giá trị của Tcomp và TC 
của mẫu kích thước nano so với mẫu khối, tác giả giả thiết rằng sự thay đổi của 
Ms ở mẫu kích thước nanomet là do ảnh hưởng của lớp vỏ bề mặt của hạt nano bị 
khử từ hoặc là do có một lượng nhỏ các tạp chất phi từ tính mà các nghiên cứu 
trên phổ nhiễu xạ tia X và phổ tán sắc năng lượng tia X không quan sát thấy. Như 
 108 
đã trình bày ở các chương trước, ở vùng bề mặt các hạt nano, sự mất cân đối 
trong liên kết không gian của các cation, ví dụ như các đứt gãy liên kết hoặc do 
sự sai lệch về thành phần hóa học so với thành phần danh định dẫn đến hiện 
tượng lệch góc giữa mômen từ của các ion đất hiếm và ion Fe và dẫn đến sự triệt 
tiêu của mômen từ [110,113]. Thực tế, như đã chỉ ra trong phổ tán sắc năng 
lượng EDX, các mẫu hạt có sự sai lệch về thành phần hóa học so với công thức 
danh định. 
Áp dụng mô hình lõi vỏ để đánh giá sự đóng góp của lớp bề mặt lên mômen 
từ của các hạt nano và áp dụng công thức (1.17), bề dày lớp vỏ t của các hạt 
DyIG và HoIG xác định được tương ứng là 1,4 nm và 1,1 nm. Các kết quả được 
chỉ ra trong bảng 5.4. 
Bảng 5.4. Bề dày lớp vỏ của các hạt nano DyIG và HoIG 
Mẫu DyIG HoIG 
Kích thước hạt dXRD (nm) 38 41 
Bề dày lớp vỏ t (nm) 1,4 1,1 
So sánh bề dày lớp vỏ t của các hạt nano này với các hạt YIG (t = 0,35 nm), 
GdIG (t = 3 nm) có thể nhận thấy ảnh hưởng rất rõ của nguyên tố đất hiếm lên sự 
mất trật tự spin ở bề mặt các hạt nano. Cụ thể là, các hạt YIG với ion Y3+ không 
từ tính, mômen từ rất gần với mẫu khối, lớp mất trật tự bề mặt rất nhỏ, không 
vượt quá kích thước một đơn vị hằng số mạng (như đã thảo luận trong chương 4) 
còn các hạt GdIG, DyIG, HoIG với các ion đất hiếm ở lớp bề mặt thì có mômen 
từ thấp hơn so với mẫu khối đáng kể, lớp mất trật tự bề mặt lớn, gấp 1 – 3 lần 
đơn vị hằng số mạng. Như vậy, nếu như các hạt YIG có sự mất trật tự spin chỉ 
xảy ra ở lớp nguyên tử ngoài cùng thì ở các hạt GdIG, DyIG, HoIG sự mất trật tự 
này lan truyền vào tâm hạt ở nhiều lớp nguyên tử. Ta có thể nhận xét rằng hiện 
tượng mất trật tự mômen từ bề mặt ở các hạt nano ganet phụ thuộc mạnh vào sự 
định hướng mômen từ của các nguyên tố đất hiếm thông qua sự cạnh tranh giữa 
năng lượng tương tác của spin của chúng với spin của các cation lân cận và năng 
lượng dị hướng gây bởi điện trường tinh thể địa phương làm định hướng ngẫu 
nhiên các mômen từ quỹ đạo. Sự mất trật tự của mômen từ đất hiếm ở bề mặt dẫn 
 109 
đến độ cảm từ ở từ trường cao có giá trị lớn hơn đáng kể so với mẫu hạt nano 
YIG và các mẫu khối RIG tương ứng như sẽ được thảo luận dưới đây. 
5.2.2 Độ cảm từ ở từ trƣờng cao 
Như đã đề cập ở đầu chương, các pherit ganet đất hiếm nhóm nặng có đặc 
điểm khác so với pherit ytri do nguyên tố đất hiếm có mômen từ và dị hướng lớn. 
Sự khác nhau về dạng đường cong từ hóa giữa YIG và các pherit ganet đất hiếm 
đã khẳng định điều này. Các đường cong từ trễ của ganet đất hiếm hầu như 
không bão hòa ở từ trường cao, đặc biệt trong vùng nhiệt độ thấp. Tính chất này 
được đặc trưng bởi giá trị độ cảm từ ở từ trường cao của các mẫu, được xác định 
bằng độ dốc của đường từ hóa ở vùng từ trường cao. Sự phụ thuộc vào nhiệt độ 
của độ cảm từ ở từ trường cao hf của các mẫu hạt pherit ganet đất hiếm kích 
thước nanomet được thể hiện trên hình 5.12. 
Các số liệu nghiên cứu của Pauthenet [111] thực hiện trên các mẫu khối cho 
thấy ở vùng nhiệt độ gần 0 K, các ion kim loại đất hiếm trong mẫu khối hầu như 
bị bão hòa từ do trường tương tác trao đổi mạnh tác dụng bởi các phân mạng sắt 
và do đó hf tiến tới 0. Khi nhiệt độ tăng, do dao động nhiệt, mômen từ của các 
ion kim loại đất hiếm bị mất trật tự một phần, do vậy độ cảm từ thay đổi dưới tác 
dụng của từ trường ngoài. Quá trình này, như đã biết, còn được gọi là quá trình 
thuận. Các giá trị hf đạt tới giá trị lớn nhất ở khoảng 50 K. Ở trên nhiệt độ này, 
do năng lượng dao động nhiệt cao hơn năng lượng tương tác tác dụng lên các ion 
kim loại đất hiếm nên mômen từ của các ion này gần như định hướng tự do theo 
từ trường ngoài. Sự phụ thuộc nhiệt độ của độ cảm từ ở từ trường cao của các hạt 
nano ganet tương tự như với mẫu khối, tuy nhiên, các giá trị này cao hơn ở trong 
dải nhiệt độ nghiên cứu. Hiện tượng này là do đóng góp của việc quay các 
mômen từ bị lệch trong lớp bề mặt theo hướng từ trường. Các nghiên cứu trên hệ 
hạt GdIG như ở chương 4 cũng đã chỉ ra rằng đóng góp của các mômen từ của 
Gd ở lớp bề mặt đối với độ cảm từ ở từ trường cao là rất lớn mà biểu hiện cụ thể 
là sự tăng độ dốc của hf ở vùng nhiệt độ thấp. Đối với các mẫu hạt nano DyIG 
và HoIG, đóng góp của mômen từ lớp bề mặt lên độ cảm từ hf ở vùng nhiệt độ 
 110 
thấp nhỏ hơn nhiều so với mẫu hạt nano GdIG. Khác với ion Gd (L = 0), các 
mômen từ ion đất hiếm ở bề mặt bị ghim bởi trường dị hướng từ tinh thể tạo bởi 
các điện trường cục bộ tác động lên các mômen quỹ đạo 4f của chúng, dẫn đến 
các mômen từ bề mặt khó quay theo hướng từ trường ngoài và đây có thể là 
nguyên nhân dẫn đến độ cảm từ của các mẫu hạt nano DyIG và HoIG nhỏ hơn so 
với mẫu hạt nano GdIG. Tuy các kết quả nghiên cứu về độ cảm từ cho thấy các 
hạt nano RIG thể hiện hiện tượng lý thú, nhưng bản chất vật lý của hiện tượng 
này còn cần phải được nghiên cứu và kiểm chứng bằng các kỹ thuật phân tích 
khác. 
0 100 200 300 400 500 600
0.000
0.001
0.002
0.003
0 100 200 300 400 500 600
0.000
0.004
0.008
0 100 200 300 400 500 600
0.000
0.001
0.002
0.003
0.004
 MÉu khèi
 MÉu h¹t 
Dy
3
Fe
5
O
12
h
f (
e
m
u
/c
m
3
O
e
)
Tb
3
Fe
5
O
12
h
f (
e
m
u
/c
m
3
O
e
)
T (K)
h
f (
e
m
u
/c
m
3
O
e
)
Ho
3
Fe
5
O
12
Hình 5.12 Độ cảm từ ở từ trường cao phụ thuộc nhiệt độ của các hạt nano DyIG, 
HoIG và TbIG so sánh với mẫu khối [111]. 
 111 
5.2.3 Lực kháng từ và dị hƣớng từ tinh thể 
Hình 5.13 biểu diễn giá trị lực kháng từ Hc theo nhiệt độ của các hạt nano 
DyIG và HoIG. Đối với mẫu DyIG, ta quan sát thấy có một cực đại Hc có giá trị 
bằng 1,9 kOe tại nhiệt độ Tcomp (225K). Trong khi đó, trên đường Hc(T) của mẫu 
HoIG lại quan sát thấy có hai giá trị cực đại Hc tại nhiệt độ 125 K và 150 K lần 
lượt là 1,35 kOe và 1,15 kOe cùng với một giá trị cực tiểu Hc tại nhiệt độ bù trừ 
Tcomp (137 K) là 250 Oe. 
Các nghiên cứu trước đây cũng đã chỉ ra sự tách đỉnh cực đại của lực kháng 
từ ở các vật liệu pherit ganet đất hiếm RIG có tồn tại nhiệt độ bù trừ Tcomp [20–
23]. Trong các nghiên cứu này, sự giảm mạnh của Hc ở vùng sát Tcomp được giải 
thích là do khi T tiến tới Tcomp, giá trị mômen từ tự phát Ms tiến tới 0 vì vậy Hc 
cũng tiến tới 0. Tuy nhiên, trong trường hợp không có sự bù trừ hoàn toàn về 
mômen từ của các phân mạng do sai hỏng cấu trúc sẽ dẫn đến vẫn tồn tại mômen 
từ ở Tcomp và Hc do đó sẽ khác 0 [21]. Với các mẫu này, đường Hc(T) chỉ xuất 
hiện một cực đại Hc và độ rộng của đỉnh cực đại tỉ lệ với độ bất đồng nhất của 
mẫu. Goranskiĩ và Zevezdin [13] phát triển mô hình lý thuyết để giải thích sự 
hình thành hai cực đại trên đường Hc(T) của các loại vật liệu này như đã trình bày 
chi tiết trong chương 1. 
Giá trị cực đại Hc có thể được đánh giá qua hằng số dị hướng K của vật liệu 
và độ cảm từ của phân mạng đất hiếm  được biểu diễn qua công thức (1.15): 
1/2
maxc
AK
H
 
  
 
 (1.15) 
Trong đó A là hệ số phụ thuộc vào góc giữa từ trường đặt vào và trục tinh thể. 
Đối với các mẫu hạt nano DyIG và HoIG, ở vùng nhiệt độ gần Tcomp, giá trị K 
xấp xỉ 104 erg/cm3 [116] và  xấp xỉ 10-3 emu/(cm3Oe) nên giá trị của Hc có bậc 
độ lớn là 103 Oe. Như vậy, các giá trị cực đại Hc của các hạt nano DyIG (1,9 
kOe) và HoIG (1,35 kOe) là phù hợp với tính toán lý thuyết. Các nghiên cứu 
trước đây công bố các giá trị Hc max thấp hơn, ví dụ như ~ 50 Oe đối với vật liệu 
DyIG và HoIG của Hanton và Mee [22,23] hoặc 600 Oe đối với vật liệu DyIG 
 112 
0 100 200 300 400 500
0.0
0.5
1.0
1.5
2.0
H
c
 (
k
O
e
)
T (K)
(a) DyIG
0 100 200 300 400 500
0.0
0.5
1.0
1.5
H
c
 (
k
O
e
)
T (K)
(b) HoIG
Hình 5.13 Lực kháng từ phụ thuộc nhiệt độ của mẫu hạt nano DyIG và HoIG 
trong một nghiên cứu khác của Uemura [24]. Sự sai khác lớn trong các giá trị 
thực nghiệm của lực kháng từ Hc đối với mẫu khối và mẫu kích thước nanomet 
cho thấy giả thiết về sự hình thành trạng thái đơn đômen ở gần nhiệt độ bù trừ 
Tcomp trong vật liệu khối là một giả thiết trong trường hợp lý tưởng. Thêm vào đó, 
 113 
các giá trị Hc rất thấp như trong các công trình [22,23] có thể là do từ trường cực 
đại đặt vào trong các nghiên cứu này chưa đủ lớn để tạo trạng thái trễ từ cực đại. 
Ở vùng nhiệt độ thấp xa khỏi vùng xuất hiện các đỉnh cực đại, Hc có xu hướng 
tăng khi nhiệt độ giảm, điều này có nguồn gốc từ sự tăng dị hướng từ tinh thể của 
phân mạng đất hiếm. Đối với cả hai mẫu hạt kích thước nanomet, ở 5 K, lực 
kháng từ đạt được xấp xỉ 1,4 kOe. Các giá trị Hc của các mẫu nghiên cứu còn phụ 
thuộc vào nhiều yếu tố khác như sự phân bố thống kê của hướng tinh thể các hạt 
trong mẫu, số phương định hướng giả bền của mômen từ các hạt, sự đóng góp 
của phân bố dị hướng bề mặt và lõi hạt và tương tác (dạng lưỡng cực và trao đổi) 
giữa các hạt. 
5.3 Kết luận chƣơng 5 
Trong chương này, tác giả đã trình bày việc chế tạo thành công các hạt 
pherit ganet DyIG, HoIG và TbIG có kích thước trung bình khoảng 40 nm bằng 
phương pháp sol-gel sau khi ủ nhiệt ở 800oC trong 5 giờ. Các phân tích cấu trúc 
tinh thể và phân tích từ đã chỉ ra rằng các mẫu này là đơn pha với độ tinh thể hóa 
cao và thành phần hóa học khá tương đồng với thành phần danh định. Các hạt 
này được coi như có cấu trúc lõi vỏ trong đó phần lõi hạt có tính chất giống với 
mẫu khối còn phần vỏ có tính chất thay đổi. Lớp vỏ mất trật tự trên bề mặt được 
coi là nguyên nhân làm giảm giá trị mômen từ tự phát của các mẫu hạt nano so 
với mẫu khối và làm tăng giá trị độ cảm từ của mẫu hạt so với mẫu khối. Các giá 
trị nhiệt độ Curie và nhiệt độ bù trừ của các mẫu phù hợp với giá trị của mẫu 
khối. Các hạt tồn tại ở trạng thái đơn đômen và có lực kháng từ rất lớn khi so 
sánh với mẫu khối. Sự hình thành các đỉnh cực đại lực kháng từ phụ thuộc vào 
mức độ sai hỏng hay thiếu hụt nguyên tử trong mẫu. Trong nghiên cứu này, mẫu 
HoIG có độ hoàn hảo cao hơn, lực kháng từ phụ thuộc nhiệt độ xuất hiện hai giá 
trị cực đại ở lân cận nhiệt độ bù trừ, điều này phù hợp với mô hình lý thuyết về 
lực kháng từ của vật liệu pherit ganet đất hiếm. Cũng thông qua nghiên cứu này, 
có thể thấy phương pháp sol-gel là phương pháp khá phù hợp để chế tạo các hạt 
nano pherit ganet cho các ứng dụng tiên tiến. 
 114 
KẾT LUẬN VÀ KIẾN NGHỊ 
Dựa trên các kết quả nghiên cứu đã trình bày trên đây, tác giả đưa ra một số 
các kết quả của luận án như sau: 
1. Các mẫu pherit ganet RIG (R = Y, Gd, Tb, Dy, Ho) dạng hạt có kích thước 
nanomet và thành phần hóa học phù hợp với công thức danh định đã được 
chế tạo thành công bằng phương pháp sol-gel. Phương pháp này cho phép 
chế tạo các hạt pherit ganet với nhiệt độ hình thành pha tới hạn là khoảng 
800
o
C. Các hạt có dạng gần cầu với kích thước trung bình ~ 40 nm, trong 
đó trên 60% hạt phân bố hẹp trong khoảng từ 35 – 45 nm. 
2. Ở khoảng kích thước này, tính chất từ của các hạt có thể được giải thích 
thỏa đáng dựa trên mô hình lõi – vỏ trong đó phần thể tích lõi của vật liệu 
có trật tự spin tương tự như mẫu khối còn phần vỏ là lớp mất trật tự spin. 
Phần lõi hạt quyết định giá trị nhiệt độ Curie và nhiệt độ bù trừ của mẫu nên 
các giá trị này không có sự sai khác so với mẫu khối. Phần vỏ hạt với các 
mômen từ mất trật tự là nguyên nhân gây nên sự giảm giá trị mômen từ ở 
nhiệt độ thấp và làm tăng dị hướng từ hiệu dụng của mẫu. Mẫu hạt nano 
YIG thể hiện tính siêu thuận từ ở nhiệt độ trên 350K. Kết quả phân tích cho 
thấy nhiệt độ chuyển pha siêu thuận từ của các mẫu phụ thuộc đáng kể vào 
tương tác từ giữa các hạt. Năng lượng tương tác từ tổng cộng của hệ hạt 
YIG đã được đánh giá qua sự phụ thuộc nhiệt độ của độ cảm từ ban đầu của 
vật liệu ở vùng nhiệt độ trong khoảng nhiệt độ chuyển pha TB và nhiệt độ 
trật tự từ TC. 
3. Bề dày của lớp mật trật từ bề mặt của các hạt phụ thuộc vào sự có mặt của 
các ion đất hiếm. Do các ion đất hiếm trong lớp vỏ có mômen từ lớn nhưng 
có tương tác với các ion lân cận rất yếu so với tương tác kết cặp từ Fe-Fe 
nên mômen từ của các ion đất hiếm dễ bị lệch so với phương định hướng 
của các ion đất hiếm trong lõi hạt khi có sự bất đối xứng của các ion lân cận 
tại lớp bề mặt. Điều này thể hiện qua độ dày trung bình của lớp vỏ của các 
hạt trong mẫu RIG lớn hơn rất nhiều so với lớp vỏ của các hạt trong mẫu 
 115 
YIG với phân mạng Y phi từ. Cũng do sự mất trật tự của các ion đất hiếm 
có tương tác yếu ở lớp vỏ, các hạt nano pherit ganet đất hiếm thể hiện độ 
cảm từ ở vùng từ trường cao lớn hơn đáng kể so với mẫu khối tương ứng. 
So với các mẫu hạt có dị hướng từ tinh thể lớn RIG (R = Tb, Dy, Ho), mẫu 
hạt GdIG có độ cảm từ tăng dị thường ở vùng nhiệt độ thấp do các ion Gd3+ 
có mômen từ quỹ đạo bằng 0 nên mômen từ của chúng (đóng góp bởi các 
spin của điện tử 4f) không bị ghim bởi điện trường tinh thể địa phương. 
Hiện tượng đóng băng spin của các ion Gd bề mặt ở vùng nhiệt độ thấp 
được thể hiện qua sự bất thuận nghịch ở vùng từ trường cao của các đường 
cong từ trễ ở 5K và 15K. 
4. Các hạt nano pherit ganet đều ở ở trạng thái đơn đômen do đó các giá trị 
cực đại của lực kháng từ của các mẫu rất lớn (Hc
max
 = 1,1 – 1,9 kOe) so với 
các giá trị đã quan sát thấy (Hc
max
 ~ 600 Oe) trên mẫu khối khi đi qua điểm 
bù trừ. Bên cạnh đó, sự hình thành đỉnh cực đại Hc đơn hoặc kép còn phụ 
thuộc vào mức độ hoàn hảo của tinh thể trong mẫu. Các hạt có nhiều sai 
hỏng mạng sẽ dẫn đến mômen từ của các phân mạng không được bù trừ 
nhau hoàn toàn, khi đó lực kháng từ chỉ xuất hiện cực đại đơn như quan sát 
thấy trên mẫu hạt DyIG. 
Tác giả cũng đưa ra một số kiến nghị tiếp tục nghiên cứu dựa trên các kết 
quả nghiên cứu đối với hệ hạt pherit ganet đất hiếm như sau: 
1. Nghiên cứu đã gợi mở sự phức tạp của sự phân bố của các cation đất hiếm 
cũng như kim loại chuyển tiếp ở cấu trúc bề mặt hạt và dẫn đến các hiện 
tượng từ thú vị trong các mẫu có kích thước nano khi đóng góp của bề mặt 
trở nên chiếm ưu thế. Do đó, cần có nghiên cứu tỉ mỉ hơn về cấu trúc và 
tính chất bề mặt hạt thông qua các phép phân tích có độ tin cậy cao như phổ 
Mössbauer, phổ nhiễu xạ nơtron, các hiệu ứng quang từ như hiệu ứng Kerr, 
Faraday... Bên cạnh đó, việc giảm kích thước hạt xuống thấp hơn nữa để có 
bức tranh toàn diện hơn về ảnh hưởng của lớp bề mặt và hiệu ứng giảm 
kích thước lên các tính chất hạt là cần thiết, do đó cần nghiên cứu sử dụng 
các phương pháp mới để chế tạo các hạt có kích thước nhỏ hơn. 
 116 
2. Ngoài ảnh hưởng của hiệu ứng bề mặt thì tương tác giữa các hạt cũng đóng 
vai trò quan trọng quyết định tính chất của hệ vật liệu dạng hạt. Các hạt 
nano pherit ganet chế tạo được thường có sự tương tác tương hỗ rất lớn dẫn 
đến hiện tượng kết đám. Việc nghiên cứu sâu hơn về vấn đề năng lượng 
tương tác giữa các hạt và các yếu tố ảnh hưởng đến tương tác đóng vai trò 
quan trọng trong việc nghiên cứu ứng dụng các hạt nano pherit ganet đất 
hiếm trong các lĩnh vực như y sinh, công nghệ chất lỏng từ, công nghệ ghi 
từ... Các vấn đề liên quan đến hướng nghiên cứu này bao gồm công nghệ 
phân tách và cô lập các hạt nano, công nghệ chế tạo các cấu trúc lõi/vỏ 
trong đó vật liệu lõi là ganet có từ tính và vật liệu vỏ là một chất phi từ tính, 
chức năng hóa bề mặt hạt 
3. Bên cạnh việc hoàn thiện các phép đo khảo sát tính chất từ ở nhiệt độ thấp 
của mẫu TbIG và nghiên cứu sâu hơn trên các vật liệu pherit ganet đất hiếm 
khác thì vấn đề nghiên cứu sự pha tạp các nguyên tố khác nhau cho các ion 
Fe và đất hiếm và ảnh hưởng của chúng lên các tính chất vật lý của các hạt 
nano pherit cần được tiếp tục nghiên cứu. 
TÀI LIỆU THAM KHẢO 
[1] E. E. Anderson, “The magnetizations of yttrium and gadolinium iron 
garnets,” Doctor thesis, University of Maryland, 1964. 
[2] E. E. Anderson, “Molecular field model and the magnetization of YIG,” 
Phys. Rev., vol. 134, p. A1581, 1964. 
[3] M. A. Gilleo, Ferromagnetic Materials: Handbook of Magnetic Materials, 
vol. 2. N. P. Company, 1980. 
[4] M. A. Gilleo and S. Geller, “Structure and ferrimagnetism of yttrium and 
rare-earth iron garnets,” Acta Crystallogr, vol. 10, p. 239–239, 1957. 
[5] S. Geller, “Crystal chemistry of the garnets,” Z. Krist., vol. 125, p. 1–47, 
1967. 
[6] M. A. Gilleo and S. Geller, “Magnetic and crystallographic properties of 
substituted yttrium iron garnet, 3Y2O3.xM2O3.(5-x)Fe2O3,” Phys. Rev, vol. 110, 
p. 73, 1958. 
[7] M. A. Gilleo, “Superexchange interaction in ferrimagnetic garnets and 
spinels which contain randomly incomplete linkages,” J. Phys. Chem. Solids, vol. 
13, no. 1–2, p. 33–39, 1960. 
[8] H. A. Kramers, “L’interaction entre les atomes magnétogènes dans un 
cristal paramagnétique,” Phys. 1, p. 182, 1934. 
[9] S. Geller and M. A. Gilleo, “The crystal structure and ferrimagnetism of 
yttrium-iron garnet, Y3Fe2(FeO4)3,” J. Phys. Chem. Solids, vol. 3, no. 1–2, pp. 
30–36, 1957. 
[10] T. Đ. Hiền and L. T. Tài, “Từ học và vật liệu từ,” NXB Bách Khoa, 2008. 
[11] L. Néel, “Propriétés magnétiques des ferrites. Ferrimagnétisme et 
antiferromagnétisme,” Ann. Phys., vol. 3, p. 137–198, 1948. 
[12] K. P. Belov and S. A. Nikitin, “Theory of the anomalies of physical 
properties of ferrimagnets,” Sov. Phys. JETP, vol. 31, no. 3, p. 505–508, 1970. 
[13] B.P. Goranskiĭ and A. K. Zvezdin, “Temperature dependence of the 
coercive force of ferrimagnets near the compensation temperature,” Sov. Phys. 
JETP, vol. 30, no. 2, p. 299–301, 1970. 
[14] L. D. Landau, E. M. Lifshit, and L. P. Pitaevskii, Electrodynamics of 
continuous media. Moscow, 1982. 
[15] W. P. Wolf, “Effect of crystalline electric fields on ferromagnetic 
anisotropy,” Phys. Rev, vol. 108, p. 1152–1157, 1957. 
[16] R. F. Pearson and A. D. Annis, “Anisotropy of Fe3+ ions in yttrium iron 
garnet,” J. Appl. Phys., vol. 39, p. 1338–1339, 1968. 
[17] F.Tcheou, H. Fuess and E. F. Bertaut, “II-Neutron diffraction study of 
some rare earth iron garnet RIG (R = Dy, Er, Yb, Tm) at low temperatures,” 
Solid State Commun., vol. 8, p. 1751–1758, 1970. 
[18] M. Lahoubi, “Chapter 10. Temperature evolution of the double umbrella 
magnetic structure in terbium iron garnet,” in Neutron Difraction, no. 230, I. 
Khidirov, Ed. In Tech, p. 203–230, 1956 
[19] S. Geller, J. P. Remeika, R. C. Sherwood, H. J. Williams and G. P. 
Espinosa, “Magnetic study of the heavier rare earth iron garnets,” Phys. Rev, vol. 
137, no. 3A, p. 1034–1038, 1965. 
[20] K. P. Belov, M. A. Zaĭtseva and A. V. Ped’ko, “Magnetic properties of 
gadolinium oxides,” Sov. Phys. JETP, vol. 36, no. 6, p. 1191–1196, 1959. 
[21] K. P. Belov and A. V. Ped’ko, “Anomalies in the temperature dependence 
of the coercive force in rare earth element garnet ferrites in the neighborhood of 
the compensation point,” Sov. Phys. JETP, vol. 12, no. 4, p. 666–668, 1961. 
[22] J. Hanton, “Intrinsic coercive force of rare earth iron garnets near the 
compensation temperature,” Magn. IEEE Trans., vol. 3, p. 505 – 509, 1967. 
[23] C. D. Mee, “The magnetization mechanism in single crystal garnet slabs 
near the compensation temperature,” IBM J. Res. Dev., vol. 11, p. 468 – 476, 
1967. 
[24] M. Uemura, T. Yamagishi, S. Ebisu, S. Chikazawa and S. Nagata, “A 
double peak of the coercive force near the compensation temperature in the rare 
earth iron garnets,” Philos. Mag., vol. 88, no. 2, p. 209–228, 2008. 
[25] E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in 
heteresis in heterogeneous alloys,” Phil. Trans. Roy.Soc., vol. A-240, p. 599–
642, 1948. 
[26] F. Forlini and N.Minnaja, “The coercive force of a ferrimagnetic garnet 
near its compensation temperature,” IEEE Trans. Mag., vol. 2, no. 4, p. 770–770, 
1966. 
[27] T. Okuda, T. Katayama, H. Kobayashi, and N. Kobayashi, “Magnetic 
properties of Bi3Fe5O12 garnet,” J. Appl. Phys., vol. 67, p. 4944, 1990. 
[28] M. Pardavi-Horvath, “Microwave applications of soft ferrites,” J. Magn. 
Magn. Mater., vol. 215–216, p. 171–183, 2000. 
[29] D. Cruickshank, “1–2 GHz dielectrics and ferrites: overview and 
perspectives,” J. Eur. Ceram. Soc., vol. 23, no. 14, p. 2721–2726, 2003. 
[30] M. Niaz, N. Yahya and N. Nasir, “Novel EM antenna based on Y3Fe5O12 
magnetic feeders for improved MVO,” Electron. Commun. Photonics Conf., p. 
1–7, 2011. 
[31] T. Ramesh, R. S. Shinde and S. R. Murthy, “Nanocrystalline gadolinium 
iron garnet for circulator applications,” J. Magn. Magn. Mater., vol. 324, no. 22, 
p. 3668–3673, 2012. 
[32] B. Raneesh, I. Rejeena, P. U. Rehana, P. Radhakrishnan, A. Saha and N. 
Kalarikkal, “Nonlinear optical absorption studies of sol–gel derived Yttrium Iron 
Garnet (Y3Fe5O12) nanoparticles by Z-scan technique,” Ceram. Int., vol. 38, no. 
3, p. 1823–1826, 2012. 
[33] S. Kahl, S. I. Khartsev, A. M. Grishin, K. Kawano, G. Kong, R. A. 
Chakalov, and J. S. Abell, “Structure, microstructure and magneto-optical 
properties of laser deposited Gd3Ga5O12 (111) films,” J. Appl. Phys., vol. 91, no. 
12, p. 9556, 2002. 
[34] M. Inoue, K. Arai, T. Fujii and M. Abe, “Magneto-optical properties of 
one-dimensional photonic crystals composed of magnetic and dielectric layers,” . 
J. Appl. Phys., vol. 83, no. 11, p. 6768, 1998. 
[35] K. Matsumoto, T. Kondo, S. Yoshioka, K. Kamiya and T. Numazawa, 
“Magnetic refrigerator for hydrogen liquefaction,” J. Phys. Conf. Ser, vol. 150, 
no. 1, p. 012028, 2009. 
[36] T. Numazawa, K. Kamiya, S. Yoshioka, H. Nakagome and K. Matsumoto, 
“Development of a magnetic refrigerator for hydrogen liqufaction,” AIP Conf. 
Proc., vol. 985, no. 1, p. 1183–1189, 2008. 
[37] N. Hirano, S. Nagaya, M. Takahashi, T. Kuriyama, K. Ito and S.Nomura, 
“Development of magnetic refrigerator for room temperature application,” Adv. 
Cryog. Eng, vol. 47, p. 1027–1034, 2002. 
[38] Y. Hakuraku and H. Ogata, “A rotary magnetic refrigerator for superfluid 
helium production,” J. Appl. Phys., vol. 60, no. 9, p. 3266, 1986. 
[39] T. Numazawa, T. Hashimoto, H. Nakagome, N. Tanji and O. Horigami, 
“The helium magnetic refrigerator. II-Liquefaction process and efficiency,” Adv. 
Cryog. Eng., vol. 29, p. 589–596, 1984. 
[40] R. Kar and A. Misra, “Rise of temperature in ferromagnetic nanoparticles 
due to perpendicular pumping,” Nanosci. Nanotechnol. Lett., vol. 2, no. 3, pp. 
253–256, 2010. 
[41] K. Shimokawa, H. Dohnomae, T. Mukai, H. Yamada, H. Matsuda and M. 
Daimon, “Nanocrystalline garnet disk for magneto – optical recording media,” J. 
Magn. Magn. Mater., vol. 154, p. 154, 1996. 
[42] A. M. Kalashnikova, V. V. Pavlov, A. V. Kimel, A. Kirilyuk, T. Rasing 
and R. V. Pisarev, “Magneto-optical study of holmium iron garnet Ho3Fe5O12,” 
Low Temp. Phys, vol. 38, p. 863–869, 2012. 
[43] M. Abe and M. Gomi, “Magneto-optical recording on garnet films,” J. 
Magn. Magn. Mater., vol. 84, p. 222–228, 1990. 
[44] H. M. Widatallah, C. Johnson, S. H. Al-Harthi, A. M. Gismelseed, A. D. 
Al-Rawas, S. J. Stewart, M. E. Elzain, I. A. Al-Omari and A. A. Yousif, “A 
structural and Mössbauer study of Y3Fe5O12 nanoparticles prepared with high 
energy ball milling and subsequent sintering,” Hyperfine Interact., vol. 183, no. 
1–3, p. 87–92, 2008. 
[45] Z. Abbas, R. M. Al-habashi and K. Khalid, “Garnet ferrite (Y3Fe5O12) 
nanoparticles prepared via modified conventional mixing oxides (MCMO) 
method,” Eur. J. Sci. Res., vol. 36, no. 2, p. 154–160, 2009. 
[46] F. Sánchez-De Jesús, C. A. Cortés, R. Valenzuela, S. Ammar and A. M. 
Bolarín-Miró, “Synthesis of Y3Fe5O12 (YIG) assisted by high-energy ball 
milling,” Ceram. Int., vol. 38, no. 6, p. 5257–5263, 2012. 
[47] R. J. Joseyphus, A. Narayanasamy, A. K. Nigam and R. Krishnan, “Effect 
of mechanical milling on the magnetic properties of garnets,” J. Magn. Magn. 
Mater., vol. 296, no. 1, p. 57–64, 2006. 
[48] H. Yu, L. Zeng, C. Lu, W. Zhang and G. Xu, “Synthesis of 
nanocrystalline yttrium iron garnet by low temperature solid state reaction,” 
Mater. Charact., vol. 62, no. 4, p. 378–381, 2011. 
[49] L. Fernandez-Garcia, M. Suarez and J. L. Menendez, “Synthesis of mono 
and multidomain YIG particles by chemical coprecipitation or ceramic 
procedure,” J. Alloys Compd., vol. 495, no. 1, p. 196–199, 2010. 
[50] W. Zhang, C. Guo, R. Ji, C. Fang and Y. Zeng, “Low-temperature 
synthesis and microstructure-property study of single-phase yttrium iron garnet 
(YIG) nanocrystals via a rapid chemical coprecipitation,” Mater. Chem. Phys., 
vol. 125, no. 3, p. 646–651, 2011. 
[51] J. M. Jafelicci and R. H. M. Godoi, “Preparation and characterization of 
spherical yttrium iron garnet via coprecipitation,” J. Mag.Mag. Mats, vol. 230, p. 
1421, 2001. 
[52] M. M. Rashad, M. M. Hessien, A. El-Midany and I. A. Ibrahim, “Effect of 
synthesis conditions on the preparation of YIG powders via co-precipitation 
method,” J. Magn. Magn. Mater., vol. 321, no. 22, p. 3752–3757, 2009. 
[53] C. A. Cortés-Escobedo, A. M. Bolarín-Miró, F. Sánchez-De Jesús, R. 
Valenzuela, E. P. Juárez-Camacho, I. L. Samperio-Gomez and A. Souad, 
“Y3Fe5O12 prepared by mechanosynthesis from different iron sources,” Adv. 
Mats. Phys. Chem, vol. 3, p. 41–46, 2013. 
[54] A. Mergen and A. Qureshi, “Characterization of YIG nanopowders by 
mechanochemical synthesis,” J. Alloys Compd., vol. 478, no. 1–2, p. 741–744, 
2009. 
[55] M. A. Karami, H. Shokrollahi, and B. Hashemi, “Investigation of 
nanostructural, thermal and magnetic properties of yttrium iron garnet 
synthesized by mechanochemical method,” J. Magn. Magn. Mater., vol. 324, no. 
19, p. 3065–3072, 2012. 
[56] A. G. Teijeiro, D. Baldomir, J. Rivas, S. Paz, P. Vaqueiro and A. L. 
Quintela, “Structural and magnetic characterization of YIG particles prepared 
using microemulsions,” J. Magn. Magn. Mater., vol. 140–144, p. 2129–2130, 
1995. 
[57] P. Vaqueiro, M. A. López-Quintela, J. Rivas and J. M. Greneche, 
“Annealing dependence of magnetic properties in nanostructured particles of 
yttrium iron garnet prepared by citrate gel process,” J. Mag.Mag. Mats, vol. 169, 
p. 56–68, 1997. 
[58] M. Pal and D. Chakravorty, “Synthesis of nanocrystalline yttrium iron 
garnet by sol – gel route,” Phys. E, vol. 5, p. 200–203, 2000. 
[59] R. D. Sánchez, J. Rivas, P. Vaqueiro, M. A. López-Quintela and D. 
Caeiro, “Particle size effects on magnetic properties of yttrium iron garnets 
prepared by a sol–gel method,” J. Magn. Magn. Mater., vol. 247, no. 1, p. 92–98, 
2002. 
[60] R. D. Sánchez, C. A. Ramos, J. Rivas, P. Vaqueiro and M. A. López-
Quintelaz, “Ferromagnetic resonance and magnetic properties of single- domain 
particles of Y3Fe5O12 prepared by sol – gel method,” Phys. B, vol. 354, p. 104–
107, 2004. 
[61] M. Rajendran, S. Deka, P. A. Joy and A. K. Bhattacharya, “Size-
dependent magnetic properties of nanocrystalline yttrium iron garnet powders,” 
J. Magn. Magn. Mater., vol. 301, no. 1, p. 212–219, 2006. 
[62] S. Hosseini Vajargah, H. R. Madaah Hosseini and Z. A. Nemati, 
“Synthesis of nanocrystalline yttrium iron garnets by sol–gel combustion 
process: The influence of pH of precursor solution,” Mater. Sci. Eng. B, vol. 129, 
no. 1–3, p. 211–215, 2006. 
[63] S. Hosseini Vajargah, H. R. Madaah Hosseini and Z. A. Nemati, 
“Preparation and characterization of yttrium iron garnet (YIG) nanocrystalline 
powders by auto-combustion of nitrate-citrate gel,” J. Alloys Compd., vol. 430, 
no. 1–2, pp. 339–343, 2007. 
[64] P. Vaqueiro, M. P. Crosnier-Lopez and M. A. López-Quintela, “Synthesis 
and characterization of yttrium iron garnet nanoparticles,” J. Sol. Stat. Chem, vol. 
168, p. 161–168, 1996. 
[65] S. Labuayai, S. Siri and S. Maensiri, “Synthesis of Yttrium Iron Garnet 
(Y3Fe5O12) nanopowders by a simple proteic sol-gel process,” J. optolectronic 
Adv. Mater., vol. 10, no. 10, p. 2694–2699, 2008. 
[66] R. H. Kodama, A. E. Berkowitz, E. J. McNiff and S. Foner, “Surface spin 
disorder in NiFe2O4 nanoparticles.,” Phys. Rev. Lett, vol. 77, no. 2, p. 394–397, 
1996. 
[67] R. H. Kodama and A. E. Berkowitz, “Atomic scale magnetic modeling of 
oxide nanoparticles,” Phys. Rev. B, vol. 59, p. 6321–6356, 1999. 
[68] M. Jamet, W. Wernsdorfer, C. Thirion, V. Dupuis, P. Melinon, A. Perez 
and D. Mailly, “Magnetic anisotropy in single clusters,” Phys. Rev.B, vol. 69, p. 
24401, 2004. 
[69] F. Dorfbauer, R. Evans, M. Kirschner, O. Chubykalo-Fesenko, R. 
Chantrell and T. Schrefl, “Effects of surface anisotropy on the energy barrier in 
cobalt-silver core-shell nanoparticles,” J. Mag.Mag. Mats, vol. 316, p. e791, 
2007. 
[70] R. Evans, F. Dorfbauer, O. Chubykalo-Fesenko, T. Schrefl and R. W. 
Chantrell, “The effects of the surface on the structural and magnetic properties of 
CoAg core-Shell nanoparticles,” IEEE Trans. Magn, vol. 43, p. 3106, 2007. 
[71] F. Luis, F. Bartolomé, F. Petroff, J. Bartolomé, L. M. García, C. Deranlot, 
H. Jaffrès, M. J. Martínez, P. Bencok, F. Wilhelm, A. Rogalev and N. B. 
Brookes, “Tuning the magnetic anisotropy of Co nanoparticles by metal 
capping,” Eur. Lett, vol. 76, p. 142, 2006. 
[72] C. Binns, S. H. Baker, K. W. Edmonds, P. Finetti, M. J. Maher and S. C. 
Louch, “Magnetism in exposed and coated nanoclusters studied by dichroism in 
X-ray absorption and photoemission,” Phys. B, vol. 318, p. 350–359, 2002. 
[73] A. Millan, A. Urtizberea, F. Palacio, N. J. O.Silva, V. S. Amaral and E. S. 
And, “Surface effects in maghemite nanoparticles,” J. Mag.Mag. Mats, vol. 312, 
p. 5–9, 2007. 
[74] E. F. Kneller and F. E. Luborsky, “Particle size dependence of coercivity 
and remanence of single domain particles,” J. Appl. Phys, vol. 34, p. 656–658, 
1963. 
[75] H. Kronmüller, G. J. Long, and F. G. (Eds.), Supermagnets Hard 
Magnetic Materials. Dordrecht: Kluwer, p. 461, 1991 
[76] C. Xu, “Modification of superparamagnetic nanoparticles for biomedical 
applications,” Brown University, U.S, 2009. 
[77] B. D. Culity and C. D. Graham, Introduction to magnetic materials. John 
Wiley Sons, Inc., 2009. 
[78] J. S. Kum, S. J. Kim, I.-B. Shim and C. S. Kim, “Magnetic properties of 
Ce-substituted yttrium iron garnet ferrite powders fabricated using a sol–gel 
method,” J. Magn. Magn. Mater., vol. 272–276, p. 2227–2229, 2004. 
[79] B. Dong, Y. Cui, H. Yang, L. Yu, W. Jin and S. Feng, “The preparation 
and magnetic properties of GdxBiY2−xFe5O12 nanoparticles,” Mater. Lett., vol. 60, 
no. 17–18, p. 2094–2097, 2006. 
[80] H. Xu, H. Yang, W. Xu and S. Feng, “Magnetic properties of Ce, Gd-
substituted yttrium iron garnet ferrite powders fabricated using a sol–gel 
method,” J. Mater. Process. Technol., vol. 197, no. 1–3, p. 296–300, 2008. 
[81] H. Xu, H. Yang, W. Xu and L. Yu, “Magnetic properties of Bi-doped 
Y3Fe5O12 nanoparticles,” Curr. Appl. Phys., vol. 8, no. 1, p. 1–5, 2008. 
[82] J. W. Lee, J. H. Oh, J. C. Lee and S. C. Choi, “Magneto-optical properties 
of Bi-YIG nanoparticles dispersed in the organic binder,” J. Magn. Magn. 
Mater., vol. 272–276, p. 2230–2232, 2004. 
[83] Z. Cheng, H. Yang, L. Yu, Y. Cui and S. Feng, “Preparation and magnetic 
properties of Y3Fe5O12 nanoparticles doped with the gadolinium oxide,” J. Magn. 
Magn. Mater., vol. 302, no. 1, p. 259–262, 2006. 
[84] F. R. Lamastra, A. Bianco, F. Leonardi, G. Montesperelli, F. Nanni and G. 
Gusmano, “High density Gd-substituted yttrium iron garnets by coprecipitation,” 
Mater. Chem. Phys., vol. 107, no. 2–3, p. 274–280, 2008. 
[85] Z. Cheng, H. Yang, and L. Yu, “Saturation magnetic properties of Y3− x 
RexFe5O12 (Gd, Dy, Nd, Sm and La) nanoparticles grown by a sol–gel method,” 
J. Mater. Sci Mater Electron, vol. 19, p. 442, 2008. 
[86] Z. Cheng and H. Yang, “Synthesis and magnetic properties of Sm–
Y3Fe5O12 nanoparticles,” Phys. E Low-dimensional Syst. Nanostructures, vol. 
39, no. 2, p. 198–202, Sep. 2007. 
[87] Z. Cheng, Y. Cui, H. Yang and Y. Chen, “Effect of lanthanum ions on 
magnetic properties of Y3Fe5O12 nanoparticles,” J. Nanoparticle Res., vol. 11, 
no. 5, p. 1185–1192, 2008. 
[88] M. Niyaifar, A. Beitollahi, N. Shiri, M. Mozaffari and J. Amighian, 
“Effect of indium addition on the structure and magnetic properties of YIG,” J. 
Magn. Magn. Mater., vol. 322, no. 7, p. 777–779, 2010. 
[89] C. Guo, W. Zhang, R. Ji and Y. Zeng, “Effects of In3+substitution on the 
structure and magnetic properties of multi-doped YIG ferrites with low saturation 
magnetizations,” J. Magn. Magn. Mater., vol. 323, no. 5, p. 611–615, 2011. 
[90] Z. Azadi Motlagh, M. Mozaffari, and J. Amighian, “Preparation of nano-
sized Al-substituted yttrium iron garnets by the mechanochemical method and 
investigation of their magnetic properties,” J. Magn. Magn. Mater., vol. 321, no. 
13, p. 1980–1984, 2009. 
[91] K. Praveena and S. Srinath, “Effect of Gd3+ on dielectric and magnetic 
properties of Y3Fe5O12,” J. Magn. Magn. Mater., vol. 349, p. 45–50, 2014. 
[92] Z. Cheng, H. Yang, Y. Cui, L. Yu, X. Zhao and S. Feng, “Synthesis and 
magnetic properties of Y3−xDyxFe5O12 nanoparticles,” J. Magn. Magn. Mater., 
vol. 308, no. 1, p. 5–9, 2007. 
[93] M. A. Ahmed, S. T. Bishay and S. I. El-dek, “Conduction mechanism and 
magnetic behavior of dysprosium strontium iron garnet (DySrIG) nanocrystals,” 
Mater. Chem. Phys., vol. 126, no. 3, p. 780–785, 2011. 
[94] C. N. Chinnasamy, J. M. Greneche, M. Guillot, B. Latha, T. Sakai, C. 
Vittoria and V. G. Harris, “Structural and size dependent magnetic properties of 
single phase nanostructured gadolinium-iron-garnet under high magnetic field of 
32 tesla,” J. Appl. Phys., vol. 107, no. 9, p. 09A512, 2010. 
[95] M. Guillot, C. N. Chinnasamy, J. M. Greneche, and V. G. Harris, “Tuning 
the cation distribution and magnetic properties of single phase nanocrystalline 
Dy3Fe5O12 garnet,” J. Appl. Phys., vol. 111, no. 7, p. 07A517, 2012. 
[96] Y. J. Wu, H. P. Fu, R. Y. Hong, Y. Zheng and D. G. Wei, “Influence of 
surfactants on co-precipitation synthesis of Bi–YIG particles,” J. Alloys Compd., 
vol. 470, no. 1–2, p. 497–501, 2009. 
[97] C. Kuroda, T. Kim, T. Hirano, K. Yoshida, T. Namikawa and Y. 
Yamazaki, “Preparation of nano-sized Bi-YIG particles for micro optics 
applications,” Electrochim. Acta, vol. 44, no. 21–22, p. 3921–3925, 1999. 
[98] H. K. Xu, C. M. Sorensen, K. J. Klabunde and G. C. Hadjipanayis, 
“Aerosol synthesis of gadolinium iron garnet particles,” J. Mater. Res., vol. 7, 
no. 03, p. 712–716, 1992. 
[99] H. Sözeri and N. Ghazanfari, “The synthesis of nanocrystalline YIG in an 
ammonium nitrate melt,” Mater. Chem. Phys., vol. 113, no. 2–3, p. 977–981, 
2009. 
[100] M. Schieber and Z. H. Kalman, “Unit cell dimensions of yttrium iron 
garnets containing neodymium, praesodymium and lanthanum ions,” Acta 
Crystallogr., vol. 14, p. 1221–1222, 1961. 
[101] R. Pauthenet, “Les propriétés magnéues des ferrites d’yttrium et de terres 
rares de formule 5Fe2O3.3M2O3,” University of Grenoble, 1985. 
[102] G. F. Dionne, “Molecular field coefficients of substituted yttrium iron 
garnets,” J. Appl. Phys., vol. 41, no. 12, p. 4874, 1970. 
[103] L. Néel, “Magnetic properties of ferrites: ferrimagnetism and 
antiferromagnetism,” Ann. Phys. Paris, vol. 3, p. 137–198, 1948. 
[104] V. L. C. D. del Castillo and C. Rinaldi, “Effect of sample concentration on 
the determination of the anisotropy constant of magnetic nanoparticles,” IEEE 
Trans. Magn, vol. 46, no. 3, p. 852–859, 2010. 
[105] X. X. Zhang, G. H. Wen, G. Xiao, and S. Sun, “Magnetic relaxation of 
diluted and self-assembled cobalt nanocrystals,” J. Mag.Mag. Mats, vol. 261, no. 
1–2, p. 21–28, 2003. 
[106] W. P. Wolf and G. P. Rodrigue, “Preparation of polycrystalline 
ferrimagnetic garnet materials for microwave applications,” J. Appl. Phys., vol. 
29, no. 1, p. 105–108, 1958. 
[107] K.P. Belov and S.A. Nikitin, “Zur theorie der tieftemperatur-anomalien in 
den ferrit-granaten seltener erden,” Phys. stati. sol., vol. 12, p. 453–464, 1965. 
[108] G. F. Dionne, “Molecular field and exchange constants of Gd3+ substituted 
ferrimagnetic garnets,” J. Appl. Phys.,, vol. 42, p. 2142, 1971. 
[109] W. P. Wolf and R. M. Bozorth, “Susceptibility of gadolinium iron garnet 
below the Néel point,” Phys. Rev., vol. 124, p. 449, 1961. 
[110] R. Pauthenet, “Les propriétés magnéues des ferrites d’yttrium et de terres 
rares de formule 5Fe2O3.3M2O3.pdf,” Ann. Chim.Phys, vol. 3, p. 424–462, 1958. 
[111] H. M. Rodrigue and R. V. Jones, “Ferrimagnetic resonance effects and 
miscellaneous: resonance measurements in magnetic garnets,” J. Appl. Phys, vol. 
31, p. 376S, 1960. 
[112] Steen Mørup, M. F. Hansen and C. Frandsen, “Magnetic interactions 
between nanoparticles,” Beilstein J Nanotechnol., vol. 1, p. 182–190., 2010. 
[113] S. Geschwind and L. R. Walker, “Exchange resonances in gadolinium iron 
garnet near the magnetic compensation temperature,” J. Appl. Phys., vol. 30, p. 
S163, 1959. 
[114] A. Labarta, X. Batle and O. Iglesias, “Surface effects in magnetic 
nanoparticles,” D. Fiorani, Ed. Springer, 2005. 
[115] R. F. Pearson, “Magnetocrystalline anisotropy of rare-earth iron garnets,” 
J. Appl. Phys., vol. 33, no. 3, p. 1236, 1962. 
DANH MỤC CÁC CÔNG TRÌNH CÔNG BỐ 
1. D. T. T. Nguyet, N. P. Duong, T. Satoh, L. N. Anh, and T. D. Hien, 
“Temperature-dependent magnetic properties of yttrium iron garnet 
nanoparticles prepared by citrate sol–gel,” J. Alloys Compd. 541 (2012) 18 
– 22. 
2. D. T. T. Nguyet, N. P. Duong, T. Satoh, L. N. Anh, and T. D. Hien, 
“Magnetization and coercivity of nanocrystalline gadolinium iron garnet,” 
J. Magn. Magn. Mater. 332 (2013) 180 – 185. 
3. Dao Thi Thuy Nguyet, Nguyen Phuc Duong, Takuya Satoh, Luong Ngoc 
Anh, Than Duc Hien, “Magnetic properties of dysprosium iron garnet 
nanoparticles”, International Conference on Advanced Materials and 
Nanotechnologies (ICAMN),13-14
th 
(2012) 196 – 200. 
4. Đào Thị Thủy Nguyệt, Nguyễn Phúc Dương, Thân Đức Hiền, “Nghiên 
cứu chế tạo hạt ferit garnet R3Fe5O12 (R = Y, Gd, Dy) kích thước 
nanomet,” Tạp chí phát triển KH&CN 15 – T1 (2012) 27 – 31. 
5. Đào Thị Thủy Nguyệt, Nguyễn Phúc Dương, Lương Ngọc Anh, Thân 
Đức Hiền, “Structure and magnetic properties of rare-earth garnet 
nanoparticles prepared by using sol-gel method”, Journal of Science and 
Technology Technical Universities 99 (2014) 045 – 050. 
            Các file đính kèm theo tài liệu này:
 lats_dttnguyet_9359.pdf lats_dttnguyet_9359.pdf