Luận án Tác động của thể chế đến nghèo đa chiều ở Việt Nam
Chương trình tổng thể cải cách hành chính nhà nước giai đoạn 2011-2020 đã
xác định: Xây dựng, hoàn thiện hệ thống thể chế kinh tế thị trường định hướng xã hội
chủ nghĩa nhằm giải phóng lực lượng sản xuất, huy động và sử dụng có hiệu quả mọi
nguồn lực cho phát triển đất nước. Trọng tâm cải cách hành chính trong giai đoạn 10
năm tới là: Cải cách thể chế; xây dựng, nâng cao chất lượng đội ngũ cán bộ, công
chức, viên chức, chú trọng cải cách chính sách tiền lương nhằm tạo động lực thực sự
để cán bộ, công chức, viên chức thực thi công vụ có chất lượng và hiệu quả cao; nâng
cao chất lượng dịch vụ hành chính và chất lượng dịch vụ công. Riêng về vấn đề giảm
nghèo bền vững, nghị quyết số 76/2014/QH13 có nêu: Tăng cường công tác quản lý
nhà nước; hoàn thiện cơ chế điều hành, phân công đầu mối chịu trách nhiệm chính,
phân cấp đầy đủ nhiệm vụ và quyền hạn cụ thể cho địa phương; cải cách thủ tục hành
chính và phương thức để người dân, cộng đồng tham gia và tiếp cận chính sách giảm
nghèo; đẩy mạnh công tác tuyên truyền, giáo dục nâng cao ý thức tự vươn lên thoát
nghèo.
Việc nghiên cứu luận án: “Tác động của thể chế đến nghèo đa chiều ở Việt
Nam” đã rất cần thiết, xuất phát từ cách đặt vấn đề ngay từ phần mở đầu của luận án,
lại càng trở nên quan trọng hơn, vì nó chính là nội dung nòng cốt trong những giai
đoạn phát triển tiếp theo của đất nước
230 trang |
Chia sẻ: tueminh09 | Lượt xem: 611 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Tác động của thể chế đến nghèo đa chiều ở Việt Nam, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
0712836
gender | -.2018276 .0395915 -5.10 0.000 -.2794256 -.1242297
Headage2 | -.5235109 .0765253 -6.84 0.000 -.6734977 -.373524
Headage3 | -.2361015 .0815579 -2.89 0.004 -.3959521 -.076251
treem | .1149361 .027925 4.12 0.000 .0602041 .1696681
bcapmax | -.6031384 .0509949 -11.83 0.000 -.7030866 -.5031902
207
region1 | -.4398586 .1309961 -3.36 0.001 -.6966062 -.183111
region2 | .5245471 .1165002 4.50 0.000 .2962108 .7528833
region3 | .1910293 .0996176 1.92 0.055 -.0042177 .3862763
region4 | .555942 .14269 3.90 0.000 .2762747 .8356094
region5 | -.8960285 .1734102 -5.17 0.000 -1.235906 -.5561508
LogTNBQ | -.4601346 .0967708 -4.75 0.000 -.6498019 -.2704673
tt_share | -.5328081 .2669476 -2.00 0.046 -1.056016 -.0096004
thanhthi | -.2700166 .050948 -5.30 0.000 -.3698728 -.1701603
lpapi1 | -.6659111 .3943064 -1.69 0.091 -1.438737 .1069152
lpapi2 | .758269 .4114939 1.84 0.065 -.0482442 1.564782
lpapi3 | .6030146 .2892599 2.08 0.037 .0360756 1.169954
lpapi4 | -.2899056 .3555193 -0.82 0.415 -.9867105 .4068994
lpapi5 | -.9835126 .6686964 -1.47 0.041 -2.294133 .3271082
lpapi6 | -1.739105 .6432019 -2.70 0.007 -2.999757 -.4784521
|
year |
2018 | .0492682 .0756827 0.65 0.515 -.0990671 .1976036
|
_cons | 7.214432 1.570616 4.59 0.000 4.136081 10.29278
-------------+----------------------------------------------------------------
huyen |
var(_cons)| .3787037 .0406544 .306847 .4673876
------------------------------------------------------------------------------
LR test vs. probit model: chibar2(01) = 518.65 Prob >= chibar2 = 0.0000
. estat ic
Akaike's information criterion and Bayesian information criterion
-----------------------------------------------------------------------------
Model | Obs ll(null) ll(model) df AIC BIC
-------------+---------------------------------------------------------------
. | 18,730 . -4329.991 23 8705.983 8886.254
-----------------------------------------------------------------------------
Note: N=Obs used in calculating BIC; see [R] BIC note.
. estat icc
Residual intraclass correlation
------------------------------------------------------------------------------
Level | ICC Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
huyen | .274681 .0213878 .2347995 .3185168
------------------------------------------------------------------------------
. margins, dydx(*)
Average marginal effects Number of obs = 18,730
Model VCE : OIM
Expression : Marginal predicted mean, predict()
dy/dx w.r.t. : tsnguoi gender Headage2 Headage3 treem bcapmax region1 region2 region3 region4
region5
LogTNBQ tt_share thanhthi lpapi1 lpapi2 lpapi3 lpapi4 lpapi5 lpapi6 2018.year
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
tsnguoi | .0060675 .0014626 4.15 0.000 .0032009 .008934
gender | -.0252625 .0049791 -5.07 0.000 -.0350212 -.0155037
Headage2 | -.0655271 .0096705 -6.78 0.000 -.084481 -.0465732
Headage3 | -.0295525 .0102282 -2.89 0.004 -.0495993 -.0095057
treem | .0143864 .0035045 4.11 0.000 .0075176 .0212552
bcapmax | -.075494 .0065572 -11.51 0.000 -.0883459 -.062642
region1 | -.0550565 .0164916 -3.34 0.001 -.0873794 -.0227335
region2 | .0656568 .0145591 4.51 0.000 .0371215 .094192
region3 | .0239109 .0124656 1.92 0.055 -.0005212 .048343
region4 | .0695865 .0178466 3.90 0.000 .0346078 .1045651
region5 | -.1121546 .022008 -5.10 0.000 -.1552895 -.0690197
LogTNBQ | -.0575944 .0121477 -4.74 0.000 -.0814034 -.0337853
tt_share | -.0666908 .0335088 -1.99 0.047 -.1323668 -.0010148
thanhthi | -.0337976 .0064281 -5.26 0.000 -.0463965 -.0211987
lpapi1 | -.0833511 .0493953 -1.69 0.092 -.1801641 .0134618
lpapi2 | .0949114 .0515308 1.84 0.065 -.0060872 .19591
lpapi3 | .0754785 .0362453 2.08 0.037 .0044391 .1465179
lpapi4 | -.0362871 .0445038 -0.82 0.415 -.1235129 .0509387
lpapi5 | -.1231048 .0837391 -1.47 0.042 -.2872304 .0410207
lpapi6 | -.2176812 .080588 -2.70 0.007 -.3756308 -.0597316
|
year |
2018 | .0061713 .009489 0.65 0.515 -.0124267 .0247694
208
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
. margins, at((p10) lpapi1) at((p90) lpapi1)
Predictive margins Number of obs = 18,730
Model VCE : OIM
Expression : Marginal predicted mean, predict()
1._at : lpapi1 = 1.478123 (p10)
2._at : lpapi1 = 1.765047 (p90)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at |
1 | .1136973 .0090766 12.53 0.000 .0959074 .1314872
2 | .0895968 .0075276 11.90 0.000 .0748429 .1043506
------------------------------------------------------------------------------
. margins, at((p10) lpapi2) at((p90) lpapi2)
Predictive margins Number of obs = 18,730
Model VCE : OIM
Expression : Marginal predicted mean, predict()
1._at : lpapi2 = 1.603753 (p10)
2._at : lpapi2 = 1.813913 (p90)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at |
1 | .0914438 .006262 14.60 0.000 .0791704 .1037172
2 | .1113752 .0072954 15.27 0.000 .0970765 .125674
------------------------------------------------------------------------------
. margins, at((p10) lpapi3) at((p90) lpapi3)
Predictive margins Number of obs = 18,730
Model VCE : OIM
Expression : Marginal predicted mean, predict()
1._at : lpapi3 = 1.537757 (p10)
2._at : lpapi3 = 1.800574 (p90)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at |
1 | .0911602 .0058969 15.46 0.000 .0796025 .1027179
2 | .1109674 .0066454 16.70 0.000 .0979427 .1239921
------------------------------------------------------------------------------
. margins, at((p10) lpapi4) at((p90) lpapi4)
Predictive margins Number of obs = 18,730
Model VCE : OIM
Expression : Marginal predicted mean, predict()
1._at : lpapi4 = 1.637109 (p10)
2._at : lpapi4 = 1.924204 (p90)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at |
1 | .1064917 .0083783 12.71 0.000 .0900706 .1229127
2 | .0960104 .0069773 13.76 0.000 .0823352 .1096856
------------------------------------------------------------------------------
. margins, at((p10) lpapi5) at((p90) lpapi5)
Predictive margins Number of obs = 18,730
Model VCE : OIM
Expression : Marginal predicted mean, predict()
1._at : lpapi5 = 1.878078 (p10)
2._at : lpapi5 = 2.002023 (p90)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at |
1 | .1084774 .006778 16.00 0.000 .0951927 .1217621
2 | .0931727 .0065184 14.29 0.000 .080397 .1059485
------------------------------------------------------------------------------
. margins, at((p10) lpapi6) at((p90) lpapi6)
209
Predictive margins Number of obs = 18,730
Model VCE : OIM
Expression : Marginal predicted mean, predict()
1._at : lpapi6 = 1.897142 (p10)
2._at : lpapi6 = 2.014868 (p90)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at |
1 | .1104897 .0057703 19.15 0.000 .09918 .1217993
2 | .0851895 .0066116 12.88 0.000 .0722309 .098148
------------------------------------------------------------------------------
Mô hình Probit truyền thống
. probit mp tsnguoi gender Headage2 Headage3 treem bcapmax region1-region5
LogTNBQ tt_share thanhthi lpapi1-lpapi6 i.year if year!=2014
Iteration 0: log likelihood = -5872.8385
Iteration 1: log likelihood = -4738.0045
Iteration 2: log likelihood = -4601.8942
Iteration 3: log likelihood = -4589.6165
Iteration 4: log likelihood = -4589.3185
Iteration 5: log likelihood = -4589.3185
Probit regression Number of obs = 18,730
LR chi2(21) = 2567.04
Prob > chi2 = 0.0000
Log likelihood = -4589.3185 Pseudo R2 = 0.2186
------------------------------------------------------------------------------
mp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
tsnguoi | .0680268 .0102992 6.61 0.000 .0478407 .0882129
gender | -.1516925 .0357836 -4.24 0.000 -.2218269 -.081558
Headage2 | -.6328254 .0674902 -9.38 0.000 -.7651037 -.5005471
Headage3 | -.3845199 .0716053 -5.37 0.000 -.5248636 -.2441762
treem | .0895777 .0250833 3.57 0.000 .0404154 .13874
bcapmax | -.561564 .0465742 -12.06 0.000 -.6528478 -.4702802
region1 | -.2203143 .0729335 -3.02 0.003 -.3632615 -.0773672
region2 | .2916329 .0615111 4.74 0.000 .1710734 .4121925
region3 | .0811385 .0521412 1.56 0.120 -.0210565 .1833334
region4 | .4020996 .0757252 5.31 0.000 .253681 .5505182
region5 | -.5980048 .1003842 -5.96 0.000 -.7947542 -.4012554
LogTNBQ | -.8547295 .0652586 -13.10 0.000 -.9826339 -.726825
tt_share | .0074769 .1537281 0.05 0.961 -.2938246 .3087784
thanhthi | -.3911889 .0418866 -9.34 0.000 -.4732851 -.3090926
lpapi1 | -1.017704 .2451896 -4.15 0.000 -1.498267 -.537141
lpapi2 | 1.00371 .2822039 3.56 0.000 .4506006 1.55682
lpapi3 | .5687893 .2096606 2.71 0.007 .157862 .9797165
lpapi4 | -.0631981 .2420762 -0.26 0.794 -.5376587 .4112625
lpapi5 | -1.831248 .4600995 -3.98 0.000 -2.733026 -.9294693
lpapi6 | -1.379689 .3985286 -3.46 0.001 -2.160791 -.5985873
|
year |
2018 | .1784491 .0519475 3.44 0.001 .0766339 .2802643
|
_cons | 11.10152 .9681585 11.47 0.000 9.203964 12.99908
------------------------------------------------------------------------------
. margins, dydx(*)
Average marginal effects Number of obs = 18,730
Model VCE : OIM
Expression : Pr(mp), predict()
dy/dx w.r.t. : tsnguoi gender Headage2 Headage3 treem bcapmax region1 region2 region3 region4
region5 LogTNBQ tt_share thanhthi lpapi1 lpapi2 lpapi3 lpapi4 lpapi5 lpapi6 2018.year
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
tsnguoi | .0091613 .0013866 6.61 0.000 .0064437 .0118789
gender | -.0204286 .0048175 -4.24 0.000 -.0298707 -.0109866
Headage2 | -.0852234 .009035 -9.43 0.000 -.1029317 -.0675152
Headage3 | -.0517838 .0096195 -5.38 0.000 -.0706377 -.0329299
treem | .0120635 .0033767 3.57 0.000 .0054453 .0186818
bcapmax | -.0756266 .0062867 -12.03 0.000 -.0879483 -.0633048
region1 | -.02967 .009829 -3.02 0.003 -.0489344 -.0104056
region2 | .0392746 .0082725 4.75 0.000 .0230608 .0554884
region3 | .010927 .0070213 1.56 0.120 -.0028345 .0246885
210
region4 | .0541513 .0101905 5.31 0.000 .0341784 .0741242
region5 | -.0805341 .0135382 -5.95 0.000 -.1070685 -.0539997
LogTNBQ | -.1151075 .0087557 -13.15 0.000 -.1322683 -.0979467
tt_share | .0010069 .0207027 0.05 0.961 -.0395696 .0415835
thanhthi | -.0526819 .0056436 -9.33 0.000 -.0637432 -.0416206
lpapi1 | -.1370555 .0329946 -4.15 0.000 -.2017238 -.0723872
lpapi2 | .135171 .0379968 3.56 0.000 .0606985 .2096434
lpapi3 | .0765996 .0282312 2.71 0.007 .0212675 .1319317
lpapi4 | -.008511 .032601 -0.26 0.794 -.0724077 .0553857
lpapi5 | -.2466165 .0619581 -3.98 0.000 -.3680522 -.1251808
lpapi6 | -.1858045 .0536616 -3.46 0.001 -.2909792 -.0806298
|
year |
2018 | .0241588 .0070722 3.42 0.001 .0102975 .0380201
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
Một số kiểm định của mô hình
. collin mp tsnguoi gender Headage2 Headage3 treem bcapmax region1-region5
LogTNBQ tt_share thanhthi lpapi1-lpapi6 year if year!=2014
(obs=18,730)
Collinearity Diagnostics
SQRT R-
Variable VIF VIF Tolerance Squared
----------------------------------------------------
mp 1.15 1.07 0.8683 0.1317
tsnguoi 1.44 1.20 0.6940 0.3060
gender 1.10 1.05 0.9059 0.0941
Headage2 7.29 2.70 0.1372 0.8628
Headage3 7.32 2.71 0.1366 0.8634
treem 1.39 1.18 0.7187 0.2813
bcapmax 1.13 1.06 0.8884 0.1116
region1 3.47 1.86 0.2885 0.7115
region2 2.81 1.68 0.3558 0.6442
region3 2.19 1.48 0.4556 0.5444
region4 1.99 1.41 0.5036 0.4964
region5 2.13 1.46 0.4692 0.5308
LogTNBQ 2.76 1.66 0.3620 0.6380
tt_share 2.35 1.53 0.4248 0.5752
thanhthi 1.31 1.14 0.7659 0.2341
lpapi1 3.68 1.92 0.2718 0.7282
lpapi2 2.60 1.61 0.3851 0.6149
lpapi3 2.31 1.52 0.4333 0.5667
lpapi4 2.60 1.61 0.3842 0.6158
lpapi5 2.20 1.48 0.4547 0.5453
lpapi6 1.44 1.20 0.6966 0.3034
year 3.14 1.77 0.3180 0.6820
----------------------------------------------------
Mean VIF 2.63
. estat ic
Akaike's information criterion and Bayesian information criterion
-----------------------------------------------------------------------------
Model | Obs ll(null) ll(model) df AIC BIC
-------------+---------------------------------------------------------------
. | 18,730 -5872.838 -4589.319 22 9222.637 9395.07
-----------------------------------------------------------------------------
Note: N=Obs used in calculating BIC; see [R] BIC note.
. estat classification
Probit model for mp
-------- True --------
Classified | D ~D | Total
-----------+--------------------------+-----------
+ | 196 77 | 273
- | 1580 16877 | 18457
-----------+--------------------------+-----------
Total | 1776 16954 | 18730
Classified + if predicted Pr(D) >= .5
True D defined as mp != 0
--------------------------------------------------
Sensitivity Pr( +| D) 11.04%
Specificity Pr( -|~D) 99.55%
Positive predictive value Pr( D| +) 71.79%
Negative predictive value Pr(~D| -) 91.44%
211
--------------------------------------------------
False + rate for true ~D Pr( +|~D) 0.45%
False - rate for true D Pr( -| D) 88.96%
False + rate for classified + Pr(~D| +) 28.21%
False - rate for classified - Pr( D| -) 8.56%
--------------------------------------------------
Correctly classified 91.15%
--------------------------------------------------
. linktest
Iteration 0: log likelihood = -5872.8385
Iteration 1: log likelihood = -4629.2282
Iteration 2: log likelihood = -4573.1534
Iteration 3: log likelihood = -4568.4368
Iteration 4: log likelihood = -4568.3709
Iteration 5: log likelihood = -4568.3709
Probit regression Number of obs = 18,730
LR chi2(2) = 2608.94
Prob > chi2 = 0.0000
Log likelihood = -4568.3709 Pseudo R2 = 0.2221
------------------------------------------------------------------------------
mp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_hat | 1.334092 .0518511 25.73 0.000 1.232466 1.435718
_hatsq | .1408948 .0177386 7.94 0.000 .1061278 .1756618
_cons | .1427866 .0369643 3.86 0.000 .0703379 .2152353
------------------------------------------------------------------------------
Mô hình 8
Mô hình Probit đa tầng
. meprobit mp tsnguoi gender Headage2 Headage3 treem bcapmax region1-region5
LogTNBQ tt_share thanhthi##c.lpapi1 thanhthi##c.lpapi2 thanhthi##c.lpapi3
thanhthi##c.lpapi4 thanhthi##c.lpapi5 thanhthi##c.lpapi6 i.year if year!=2014||huyen:
Fitting fixed-effects model:
Iteration 0: log likelihood = -5118.9391
Iteration 1: log likelihood = -4616.6014
Iteration 2: log likelihood = -4566.0559
Iteration 3: log likelihood = -4563.0238
Iteration 4: log likelihood = -4563.0088
Iteration 5: log likelihood = -4563.0088
Refining starting values:
Grid node 0: log likelihood = -4409.5683
Fitting full model:
Iteration 0: log likelihood = -4409.5683 (not concave)
Iteration 1: log likelihood = -4336.208
Iteration 2: log likelihood = -4306.9672
Iteration 3: log likelihood = -4305.6558
Iteration 4: log likelihood = -4305.6466
Iteration 5: log likelihood = -4305.6466
Mixed-effects probit regression Number of obs = 18,730
Group variable: huyen Number of groups = 704
Obs per group:
min = 5
avg = 26.6
max = 114
Integration method: mvaghermite Integration pts. = 7
Wald chi2(27) = 781.33
Log likelihood = -4305.6466 Prob > chi2 = 0.0000
-----------------------------------------------------------------------------------
mp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
------------------+----------------------------------------------------------------
tsnguoi | .0460464 .0116941 3.94 0.000 .0231264 .0689665
gender | -.1987337 .039738 -5.00 0.000 -.2766188 -.1208486
Headage2 | -.5029426 .0769337 -6.54 0.000 -.6537299 -.3521553
Headage3 | -.2105726 .0820333 -2.57 0.010 -.371355 -.0497902
treem | .117315 .0280248 4.19 0.000 .0623875 .1722426
bcapmax | -.5962481 .0514405 -11.59 0.000 -.6970696 -.4954266
region1 | -.4141335 .1313084 -3.15 0.002 -.6714933 -.1567737
region2 | .5346287 .1167568 4.58 0.000 .3057896 .7634678
region3 | .1993637 .0997303 2.00 0.046 .0038959 .3948314
region4 | .5733244 .1430937 4.01 0.000 .292866 .8537828
region5 | -.8215692 .1748397 -4.70 0.000 -1.164249 -.4788897
LogTNBQ | -.4594921 .0969592 -4.74 0.000 -.6495287 -.2694555
tt_share | -.5579811 .2700316 -2.07 0.039 -1.087233 -.0287288
1.thanhthi | -6.849776 2.651589 -2.58 0.010 -12.0468 -1.652757
212
lpapi1 | -.931017 .4065933 -2.29 0.022 -1.727925 -.1341087
|
thanhthi#c.lpapi1 |
1 | 1.409325 .648263 2.17 0.030 .1387528 2.679897
|
lpapi2 | 1.177257 .4377015 2.69 0.007 .3193782 2.035137
|
thanhthi#c.lpapi2 |
1 | -2.658323 .8368756 -3.18 0.001 -4.298569 -1.018077
|
lpapi3 | .3541332 .298592 1.19 0.236 -.2310964 .9393627
|
thanhthi#c.lpapi3 |
1 | 2.004492 .467437 4.29 0.000 1.088332 2.920652
|
lpapi4 | -.6929274 .3686636 -1.88 0.060 -1.415495 .0296401
|
thanhthi#c.lpapi4 |
1 | 2.318061 .5379042 4.31 0.000 1.263788 3.372333
|
lpapi5 | -1.096265 .7079471 -1.55 0.121 -2.483815 .2912863
|
thanhthi#c.lpapi5 |
1 | .0630681 1.166732 0.05 0.957 -2.223685 2.349821
|
lpapi6 | -1.8281 .6720203 -2.72 0.007 -3.145236 -.5109647
|
thanhthi#c.lpapi6 |
1 | .6127154 1.226231 0.50 0.617 -1.790653 3.016083
|
year |
2018 | .07296 .0760808 0.96 0.338 -.0761557 .2220757
|
_cons | 8.420481 1.642413 5.13 0.000 5.201411 11.63955
------------------+----------------------------------------------------------------
huyen |
var(_cons)| .3768246 .040523 .3052128 .4652386
-----------------------------------------------------------------------------------
LR test vs. probit model: chibar2(01) = 514.72 Prob >= chibar2 = 0.0000
. margins, dydx(*)
Average marginal effects Number of obs = 18,730
Model VCE : OIM
Expression : Marginal predicted mean, predict()
dy/dx w.r.t. : tsnguoi gender Headage2 Headage3 treem bcapmax region1 region2 region3 region4
region5 LogTNBQ tt_share 1.thanhthi lpapi1 lpapi2 lpapi3 lpapi4 lpapi5 lpapi6 2018.year
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
tsnguoi | .0057321 .0014608 3.92 0.000 .002869 .0085951
gender | -.0247394 .0049694 -4.98 0.000 -.0344792 -.0149995
Headage2 | -.0626088 .0096606 -6.48 0.000 -.0815433 -.0436743
Headage3 | -.0262131 .0102273 -2.56 0.010 -.0462584 -.0061679
treem | .014604 .0034983 4.17 0.000 .0077475 .0214604
bcapmax | -.0742239 .0065686 -11.30 0.000 -.0870982 -.0613496
region1 | -.0515534 .0164316 -3.14 0.002 -.0837587 -.0193481
region2 | .0665532 .0145118 4.59 0.000 .0381106 .0949959
region3 | .0248178 .0124132 2.00 0.046 .0004885 .0491471
region4 | .0713703 .0177982 4.01 0.000 .0364865 .1062541
region5 | -.102273 .0220296 -4.64 0.000 -.1454502 -.0590958
LogTNBQ | -.0571999 .012096 -4.73 0.000 -.0809075 -.0334922
tt_share | -.0694603 .0337131 -2.06 0.039 -.1355368 -.0033837
1.thanhthi | -.0315706 .005753 -5.49 0.000 -.0428462 -.0202949
lpapi1 | -.0865465 .0493911 -1.75 0.080 -.1833512 .0102582
lpapi2 | .0911876 .0515154 1.77 0.077 -.0097807 .1921559
lpapi3 | .0858306 .0363954 2.36 0.018 .0144969 .1571642
lpapi4 | -.0379822 .0445882 -0.85 0.394 -.1253735 .0494091
lpapi5 | -.135155 .0835969 -1.62 0.106 -.299002 .028692
lpapi6 | -.2148104 .0802536 -2.68 0.007 -.3721046 -.0575162
|
year |
2018 | .0090933 .0094963 0.96 0.338 -.0095191 .0277057
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
. margins thanhthi, at((p10) lpapi1) at((p90) lpapi1)
Predictive margins Number of obs = 18,730
213
Model VCE : OIM
Expression : Marginal predicted mean, predict()
1._at : lpapi1 = 1.478123 (p10)
2._at : lpapi1 = 1.765047 (p90)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at#thanhthi |
1 0 | .1264231 .010158 12.45 0.000 .1065137 .1463325
1 1 | .0685999 .0107759 6.37 0.000 .0474796 .0897203
2 0 | .0909839 .0078526 11.59 0.000 .0755931 .1063746
2 1 | .0828367 .0125559 6.60 0.000 .0582275 .1074458
------------------------------------------------------------------------------
. margins thanhthi, at((p10) lpapi2) at((p90) lpapi2)
Predictive margins Number of obs = 18,730
Model VCE : OIM
Expression : Marginal predicted mean, predict()
1._at : lpapi2 = 1.603753 (p10)
2._at : lpapi2 = 1.813913 (p90)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at#thanhthi |
1 0 | .0926107 .0064795 14.29 0.000 .0799111 .1053102
1 1 | .0942125 .0128047 7.36 0.000 .0691159 .1193092
2 0 | .1250481 .0084207 14.85 0.000 .1085438 .1415525
2 1 | .0616199 .0086239 7.15 0.000 .0447173 .0785225
------------------------------------------------------------------------------
. margins thanhthi, at((p10) lpapi3) at((p90) lpapi3)
Predictive margins Number of obs = 18,730
Model VCE : OIM
Expression : Marginal predicted mean, predict()
1._at : lpapi3 = 1.537757 (p10)
2._at : lpapi3 = 1.800574 (p90)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at#thanhthi |
1 0 | .1013282 .0064932 15.61 0.000 .0886017 .1140547
1 1 | .046923 .0064807 7.24 0.000 .0342211 .0596248
2 0 | .1135331 .0070238 16.16 0.000 .0997667 .1272995
2 1 | .1113908 .0113559 9.81 0.000 .0891336 .133648
------------------------------------------------------------------------------
. margins thanhthi, at((p10) lpapi4) at((p90) lpapi4)
Predictive margins Number of obs = 18,730
Model VCE : OIM
Expression : Marginal predicted mean, predict()
1._at : lpapi4 = 1.637109 (p10)
2._at : lpapi4 = 1.924204 (p90)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at#thanhthi |
1 0 | .1217684 .0095531 12.75 0.000 .1030446 .1404922
1 1 | .0523639 .0083773 6.25 0.000 .0359446 .0687832
2 0 | .0952926 .0072863 13.08 0.000 .0810116 .1095735
2 1 | .099475 .0113192 8.79 0.000 .0772897 .1216602
------------------------------------------------------------------------------
. margins thanhthi, at((p10) lpapi5) at((p90) lpapi5)
Predictive margins Number of obs = 18,730
Model VCE : OIM
Expression : Marginal predicted mean, predict()
1._at : lpapi5 = 1.878078 (p10)
2._at : lpapi5 = 2.002023 (p90)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at#thanhthi |
1 0 | .1162566 .0074987 15.50 0.000 .1015595 .1309537
1 1 | .0825653 .0098617 8.37 0.000 .0632367 .1018938
214
2 0 | .0983576 .007069 13.91 0.000 .0845026 .1122127
2 1 | .0691959 .0090858 7.62 0.000 .051388 .0870038
------------------------------------------------------------------------------
. margins thanhthi, at((p10) lpapi6) at((p90) lpapi6)
Predictive margins Number of obs = 18,730
Model VCE : OIM
Expression : Marginal predicted mean, predict()
1._at : lpapi6 = 1.897142 (p10)
2._at : lpapi6 = 2.014868 (p90)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at#thanhthi |
1 0 | .1180338 .0062533 18.88 0.000 .1057776 .1302901
1 1 | .0814443 .0087902 9.27 0.000 .0642159 .0986728
2 0 | .0901239 .0071805 12.55 0.000 .0760503 .1041974
2 1 | .0667292 .0098189 6.80 0.000 .0474846 .0859738
------------------------------------------------------------------------------
. meprobit mp tsnguoi gender Headage2 Headage3 treem bcapmax region1-region5
lpapi1-lpapi6 i.year if year!=2014&thanhthi==0||huyen:
Fitting fixed-effects model:
Iteration 0: log likelihood = -4199.0111
Iteration 1: log likelihood = -3976.7604
Iteration 2: log likelihood = -3963.1767
Iteration 3: log likelihood = -3962.8135
Iteration 4: log likelihood = -3962.8133
Refining starting values:
Grid node 0: log likelihood = -3670.4272
Fitting full model:
Iteration 0: log likelihood = -3670.4272
Iteration 1: log likelihood = -3636.9921
Iteration 2: log likelihood = -3610.0747
Iteration 3: log likelihood = -3609.1148
Iteration 4: log likelihood = -3609.1098
Iteration 5: log likelihood = -3609.1098
Mixed-effects probit regression Number of obs = 13,085
Group variable: huyen Number of groups = 621
Obs per group:
min = 3
avg = 21.1
max = 60
Integration method: mvaghermite Integration pts. = 7
Wald chi2(18) = 525.72
Log likelihood = -3609.1098 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
mp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
tsnguoi | .0515443 .0133051 3.87 0.000 .0254668 .0776218
gender | -.2567867 .0455123 -5.64 0.000 -.3459892 -.1675843
Headage2 | -.5172612 .0815995 -6.34 0.000 -.6771933 -.3573291
Headage3 | -.2141661 .0879812 -2.43 0.015 -.3866062 -.0417261
treem | .1198073 .0310814 3.85 0.000 .0588889 .1807257
bcapmax | -.6762282 .069864 -9.68 0.000 -.8131591 -.5392973
region1 | -.4697602 .1551485 -3.03 0.002 -.7738456 -.1656748
region2 | .8841397 .1328523 6.66 0.000 .6237539 1.144525
region3 | .3571194 .1212369 2.95 0.003 .1194995 .5947392
region4 | .7051102 .1677449 4.20 0.000 .3763362 1.033884
region5 | -.9375096 .2041267 -4.59 0.000 -1.33759 -.5374286
lpapi1 | -1.037124 .4493726 -2.31 0.021 -1.917878 -.1563701
lpapi2 | 1.2233 .4716668 2.59 0.009 .2988498 2.14775
lpapi3 | .4391745 .3236068 1.36 0.175 -.1950832 1.073432
lpapi4 | -.4780359 .4069087 -1.17 0.240 -1.275562 .3194905
lpapi5 | -1.243975 .7717927 -1.61 0.107 -2.756661 .2687106
lpapi6 | -2.253674 .7303436 -3.09 0.002 -3.685121 -.8222268
|
year |
2018 | .0491431 .0855121 0.57 0.565 -.1184576 .2167438
|
_cons | 5.232591 1.712607 3.06 0.002 1.875944 8.589239
-------------+----------------------------------------------------------------
huyen |
var(_cons)| .5498602 .0580207 .4471305 .6761924
------------------------------------------------------------------------------
LR test vs. probit model: chibar2(01) = 707.41 Prob >= chibar2 = 0.0000
215
. estat ic
Akaike's information criterion and Bayesian information criterion
-----------------------------------------------------------------------------
Model | Obs ll(null) ll(model) df AIC BIC
-------------+---------------------------------------------------------------
. | 13,085 . -3609.11 20 7258.22 7407.804
-----------------------------------------------------------------------------
Note: N=Obs used in calculating BIC; see [R] BIC note.
. estat icc
Residual intraclass correlation
------------------------------------------------------------------------------
Level | ICC Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
huyen | .3547805 .0241545 .3089773 .4034098
------------------------------------------------------------------------------
. margins, dydx(*)
Average marginal effects Number of obs = 13,085
Model VCE : OIM
Expression : Marginal predicted mean, predict()
dy/dx w.r.t. : tsnguoi gender Headage2 Headage3 treem bcapmax region1 region2 region3 region4
region5 lpapi1 lpapi2 lpapi3 lpapi4 lpapi5 lpapi6 2018.year
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
tsnguoi | .0074984 .0019444 3.86 0.000 .0036875 .0113093
gender | -.0373561 .0066519 -5.62 0.000 -.0503935 -.0243186
Headage2 | -.0752486 .0120115 -6.26 0.000 -.0987907 -.0517065
Headage3 | -.0311558 .0128331 -2.43 0.015 -.0563082 -.0060035
treem | .017429 .0045332 3.84 0.000 .008544 .0263139
bcapmax | -.0983743 .0103832 -9.47 0.000 -.1187251 -.0780236
region1 | -.0683384 .0226466 -3.02 0.003 -.1127249 -.0239519
region2 | .1286203 .0192126 6.69 0.000 .0909642 .1662763
region3 | .051952 .01762 2.95 0.003 .0174174 .0864865
region4 | .1025759 .0242614 4.23 0.000 .0550244 .1501275
region5 | -.1363842 .0300266 -4.54 0.000 -.1952353 -.0775332
lpapi1 | -.1508757 .0655189 -2.30 0.021 -.2792904 -.022461
lpapi2 | .1779596 .0687631 2.59 0.010 .0431864 .3127328
lpapi3 | .0638889 .0471134 1.36 0.175 -.0284517 .1562295
lpapi4 | -.0695423 .0592208 -1.17 0.240 -.185613 .0465284
lpapi5 | -.1809674 .1123809 -1.61 0.107 -.4012299 .0392951
lpapi6 | -.3278533 .1065179 -3.08 0.002 -.5366245 -.1190821
|
year |
2018 | .0071509 .0124509 0.57 0.566 -.0172523 .0315541
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
. meprobit mp tsnguoi gender Headage2 Headage3 treem bcapmax region1-region5
lpapi1-lpapi6 i.year if year!=2014&thanhthi==1||huyen:
Fitting fixed-effects model:
Iteration 0: log likelihood = -921.33542
Iteration 1: log likelihood = -700.18967
Iteration 2: log likelihood = -680.04505
Iteration 3: log likelihood = -678.17899
Iteration 4: log likelihood = -678.14745
Iteration 5: log likelihood = -678.14735
Iteration 6: log likelihood = -678.14735
Refining starting values:
Grid node 0: log likelihood = -700.07817
Fitting full model:
Iteration 0: log likelihood = -700.07817 (not concave)
Iteration 1: log likelihood = -670.7577
Iteration 2: log likelihood = -664.92602
Iteration 3: log likelihood = -664.54253
Iteration 4: log likelihood = -664.53941
Iteration 5: log likelihood = -664.53941
Mixed-effects probit regression Number of obs = 5,645
Group variable: huyen Number of groups = 417
Obs per group:
min = 3
avg = 13.5
max = 102
Integration method: mvaghermite Integration pts. = 7
Wald chi2(18) = 119.59
216
Log likelihood = -664.53941 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
mp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
tsnguoi | .0095138 .0279883 0.34 0.734 -.0453422 .0643699
gender | -.0185597 .0905322 -0.21 0.838 -.1959995 .1588802
Headage2 | -.4186611 .3069184 -1.36 0.173 -1.02021 .182888
Headage3 | -.1527385 .3104489 -0.49 0.623 -.761207 .4557301
treem | .1198179 .0745908 1.61 0.108 -.0263774 .2660133
bcapmax | -.456026 .0759857 -6.00 0.000 -.6049553 -.3070967
region1 | -.9093002 .2537775 -3.58 0.000 -1.406695 -.4119054
region2 | .0411131 .2100195 0.20 0.845 -.3705175 .4527438
region3 | -.2478276 .1689002 -1.47 0.142 -.5788659 .0832108
region4 | .2323295 .2540784 0.91 0.361 -.265655 .7303141
region5 | -1.689409 .4206445 -4.02 0.000 -2.513857 -.8649612
lpapi1 | .9840599 .8476207 1.16 0.246 -.6772461 2.645366
lpapi2 | -.2615371 .9085673 -0.29 0.773 -2.042296 1.519222
lpapi3 | 1.251604 .7054041 1.77 0.076 -.1309628 2.634171
lpapi4 | .2143082 .8042709 0.27 0.790 -1.362034 1.79065
lpapi5 | -.1892343 1.390844 -0.14 0.892 -2.915238 2.536769
lpapi6 | -3.18219 1.33183 -2.39 0.017 -5.792528 -.5718519
|
year |
2018 | -.265092 .1738013 -1.53 0.127 -.6057364 .0755524
|
_cons | 1.785875 3.018952 0.59 0.554 -4.131162 7.702911
-------------+----------------------------------------------------------------
huyen |
var(_cons)| .2749313 .0838804 .1511911 .4999451
------------------------------------------------------------------------------
LR test vs. probit model: chibar2(01) = 27.22 Prob >= chibar2 = 0.0000
. estat ic
Akaike's information criterion and Bayesian information criterion
-----------------------------------------------------------------------------
Model | Obs ll(null) ll(model) df AIC BIC
-------------+---------------------------------------------------------------
. | 5,645 . -664.5394 20 1369.079 1501.849
-----------------------------------------------------------------------------
Note: N=Obs used in calculating BIC; see [R] BIC note.
. estat icc
Residual intraclass correlation
------------------------------------------------------------------------------
Level | ICC Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
huyen | .215644 .0516044 .1313345 .3333089
------------------------------------------------------------------------------
. margins, dydx(*)
Average marginal effects Number of obs = 5,645
Model VCE : OIM
Expression : Marginal predicted mean, predict()
dy/dx w.r.t. : tsnguoi gender Headage2 Headage3 treem bcapmax region1 region2 region3 region4
region5 lpapi1 lpapi2 lpapi3 lpapi4 lpapi5 lpapi6 2018.year
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
tsnguoi | .0005816 .0017114 0.34 0.734 -.0027726 .0039359
gender | -.0011346 .0055358 -0.20 0.838 -.0119847 .0097154
Headage2 | -.0255948 .0188133 -1.36 0.174 -.0624683 .0112786
Headage3 | -.0093377 .0189879 -0.49 0.623 -.0465532 .0278779
treem | .0073251 .0045707 1.60 0.109 -.0016334 .0162835
bcapmax | -.0278791 .0048385 -5.76 0.000 -.0373624 -.0183959
region1 | -.05559 .0158652 -3.50 0.000 -.0866853 -.0244947
region2 | .0025134 .0128363 0.20 0.845 -.0226453 .0276722
region3 | -.0151509 .0103316 -1.47 0.143 -.0354005 .0050987
region4 | .0142035 .0155659 0.91 0.362 -.0163052 .0447121
region5 | -.1032819 .0266349 -3.88 0.000 -.1554854 -.0510785
lpapi1 | .0601605 .0518188 1.16 0.246 -.0414025 .1617234
lpapi2 | -.0159891 .0555493 -0.29 0.773 -.1248637 .0928856
lpapi3 | .0765167 .0432836 1.77 0.077 -.0083176 .1613511
lpapi4 | .0131017 .0491848 0.27 0.790 -.0832986 .1095021
lpapi5 | -.0115688 .0850345 -0.14 0.892 -.1782334 .1550958
lpapi6 | -.194543 .0816582 -2.38 0.017 -.3545901 -.0344959
|
year |
217
2018 | -.0159647 .0104176 -1.53 0.125 -.0363829 .0044534
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
Mô hình Probit truyền thống
. probit mp tsnguoi gender Headage2 Headage3 treem bcapmax region1-region5
LogTNBQ tt_share thanhthi##c.lpapi1 thanhthi##c.lpapi2 thanhthi##c.lpapi3
thanhthi##c.lpapi4 thanhthi##c.lpapi5 thanhthi##c.lpapi6 i.year if year!=2014
Iteration 0: log likelihood = -5872.8385
Iteration 1: log likelihood = -4719.0185
Iteration 2: log likelihood = -4577.3231
Iteration 3: log likelihood = -4563.1005
Iteration 4: log likelihood = -4563.0089
Iteration 5: log likelihood = -4563.0088
Probit regression Number of obs = 18,730
LR chi2(27) = 2619.66
Prob > chi2 = 0.0000
Log likelihood = -4563.0088 Pseudo R2 = 0.2230
-----------------------------------------------------------------------------------
mp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
------------------+----------------------------------------------------------------
tsnguoi | .06533 .0103496 6.31 0.000 .0450453 .0856148
gender | -.1509258 .0359023 -4.20 0.000 -.2212931 -.0805585
Headage2 | -.621501 .0679651 -9.14 0.000 -.7547102 -.4882918
Headage3 | -.3706192 .0721101 -5.14 0.000 -.5119525 -.229286
treem | .09036 .0251807 3.59 0.000 .0410068 .1397132
bcapmax | -.5571852 .0469272 -11.87 0.000 -.6491608 -.4652096
region1 | -.2092903 .0731812 -2.86 0.004 -.3527228 -.0658578
region2 | .2930253 .0617488 4.75 0.000 .1719998 .4140508
region3 | .0859405 .052279 1.64 0.100 -.0165245 .1884055
region4 | .4151309 .0762533 5.44 0.000 .2656772 .5645847
region5 | -.528796 .1003994 -5.27 0.000 -.7255753 -.3320167
LogTNBQ | -.8545498 .0654757 -13.05 0.000 -.9828799 -.7262197
tt_share | -.0527583 .1541958 -0.34 0.732 -.3549765 .2494599
1.thanhthi | -7.031795 2.265803 -3.10 0.002 -11.47269 -2.590902
lpapi1 | -1.212259 .256498 -4.73 0.000 -1.714986 -.7095322
|
thanhthi#c.lpapi1 |
1 | 1.215729 .5486215 2.22 0.027 .1404501 2.291007
|
lpapi2 | 1.300164 .3052553 4.26 0.000 .7018742 1.898453
|
thanhthi#c.lpapi2 |
1 | -2.18842 .7174576 -3.05 0.002 -3.594611 -.7822287
|
lpapi3 | .3545271 .2193907 1.62 0.106 -.0754708 .784525
|
thanhthi#c.lpapi3 |
1 | 1.665105 .4146792 4.02 0.000 .8523488 2.477862
|
lpapi4 | -.3958241 .2515403 -1.57 0.116 -.888834 .0971858
|
thanhthi#c.lpapi4 |
1 | 2.012536 .4597457 4.38 0.000 1.111451 2.913621
|
lpapi5 | -1.878314 .4947498 -3.80 0.000 -2.848006 -.9086224
|
thanhthi#c.lpapi5 |
1 | .224859 1.047486 0.21 0.830 -1.828175 2.277893
|
lpapi6 | -1.469215 .4268055 -3.44 0.001 -2.305738 -.6326917
|
thanhthi#c.lpapi6 |
1 | .8087679 1.019796 0.79 0.428 -1.189995 2.80753
|
year |
2018 | .191018 .0522835 3.65 0.000 .0885441 .2934918
|
_cons | 12.12801 1.043285 11.62 0.000 10.08321 14.17281
-----------------------------------------------------------------------------------
. margins, dydx(*)
Average marginal effects Number of obs = 18,730
Model VCE : OIM
Expression : Pr(mp), predict()
218
dy/dx w.r.t. : tsnguoi gender Headage2 Headage3 treem bcapmax region1 region2 region3 region4
region5 LogTNBQ tt_share 1.thanhthi lpapi1 lpapi2 lpapi3 lpapi4 lpapi5 lpapi6 2018.year
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
tsnguoi | .008736 .0013837 6.31 0.000 .0060241 .011448
gender | -.020182 .0047994 -4.21 0.000 -.0295886 -.0107753
Headage2 | -.0831079 .0090363 -9.20 0.000 -.1008187 -.0653971
Headage3 | -.0495597 .0096198 -5.15 0.000 -.0684142 -.0307052
treem | .0120831 .0033661 3.59 0.000 .0054857 .0186804
bcapmax | -.0745075 .0062913 -11.84 0.000 -.0868382 -.0621768
region1 | -.0279866 .0097927 -2.86 0.004 -.0471799 -.0087932
region2 | .0391837 .0082462 4.75 0.000 .0230214 .055346
region3 | .0114921 .0069901 1.64 0.100 -.0022082 .0251924
region4 | .0555118 .0101879 5.45 0.000 .0355438 .0754798
region5 | -.0707113 .0134423 -5.26 0.000 -.0970577 -.0443648
LogTNBQ | -.1142715 .0087229 -13.10 0.000 -.1313681 -.0971748
tt_share | -.0070549 .0206194 -0.34 0.732 -.0474681 .0333583
1.thanhthi | -.0484872 .0045033 -10.77 0.000 -.0573135 -.0396608
lpapi1 | -.1393839 .032849 -4.24 0.000 -.2037668 -.075001
lpapi2 | .1329599 .037903 3.51 0.000 .0586713 .2072484
lpapi3 | .0785272 .0282822 2.78 0.005 .023095 .1339593
lpapi4 | -.0153176 .032495 -0.47 0.637 -.0790067 .0483715
lpapi5 | -.2469681 .0618331 -3.99 0.000 -.3681588 -.1257774
lpapi6 | -.1813501 .0534065 -3.40 0.001 -.2860249 -.0766754
|
year |
2018 | .0256946 .0070774 3.63 0.000 .0118231 .0395661
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
. probit mp tsnguoi gender Headage2 Headage3 treem bcapmax region1-region5 lpapi1-
lpapi6 i.year if year!=2014&thanhthi==1
Iteration 0: log likelihood = -827.79126
Iteration 1: log likelihood = -707.7177
Iteration 2: log likelihood = -680.44852
Iteration 3: log likelihood = -678.15734
Iteration 4: log likelihood = -678.14736
Iteration 5: log likelihood = -678.14735
Probit regression Number of obs = 5,645
LR chi2(18) = 299.29
Prob > chi2 = 0.0000
Log likelihood = -678.14735 Pseudo R2 = 0.1808
------------------------------------------------------------------------------
mp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
tsnguoi | .0129789 .0251691 0.52 0.606 -.0363516 .0623094
gender | .0329586 .0807508 0.41 0.683 -.12531 .1912273
Headage2 | -.438557 .2636926 -1.66 0.096 -.9553849 .0782709
Headage3 | -.2120887 .2666599 -0.80 0.426 -.7347325 .3105551
treem | .1199825 .0670258 1.79 0.073 -.0113856 .2513506
bcapmax | -.4314752 .0678807 -6.36 0.000 -.564519 -.2984315
region1 | -.7329773 .1936513 -3.79 0.000 -1.112527 -.3534277
region2 | .0899088 .156645 0.57 0.566 -.2171098 .3969273
region3 | -.2089886 .1208315 -1.73 0.084 -.445814 .0278368
region4 | .249741 .1862505 1.34 0.180 -.1153032 .6147853
region5 | -1.419362 .3397219 -4.18 0.000 -2.085204 -.7535188
lpapi1 | .6788093 .6551866 1.04 0.300 -.6053328 1.962952
lpapi2 | .1069315 .7309067 0.15 0.884 -1.325619 1.539482
lpapi3 | .9188329 .5712519 1.61 0.108 -.2008002 2.038466
lpapi4 | .4131624 .6546779 0.63 0.528 -.8699827 1.696307
lpapi5 | -.9687798 1.10772 -0.87 0.382 -3.13987 1.202311
lpapi6 | -3.017262 .9866855 -3.06 0.002 -4.95113 -1.083394
|
year |
2018 | -.2250962 .1402738 -1.60 0.109 -.5000278 .0498354
|
_cons | 3.09989 2.279986 1.36 0.174 -1.368802 7.568581
------------------------------------------------------------------------------
. margins, dydx(*)
Average marginal effects Number of obs = 5,645
Model VCE : OIM
Expression : Pr(mp), predict()
dy/dx w.r.t. : tsnguoi gender Headage2 Headage3 treem bcapmax region1 region2 region3 region4
region5 lpapi1 lpapi2 lpapi3 lpapi4 lpapi5 lpapi6 2018.year
219
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
tsnguoi | .0008178 .0015864 0.52 0.606 -.0022914 .003927
gender | .0020768 .005089 0.41 0.683 -.0078974 .012051
Headage2 | -.0276347 .0166416 -1.66 0.097 -.0602516 .0049822
Headage3 | -.0133643 .016808 -0.80 0.427 -.0463073 .0195787
treem | .0075604 .004233 1.79 0.074 -.000736 .0158569
bcapmax | -.0271885 .0044473 -6.11 0.000 -.035905 -.0184719
region1 | -.0461869 .0123697 -3.73 0.000 -.0704311 -.0219427
region2 | .0056654 .0098715 0.57 0.566 -.0136824 .0250132
region3 | -.013169 .0076312 -1.73 0.084 -.0281259 .001788
region4 | .0157369 .0117468 1.34 0.180 -.0072864 .0387601
region5 | -.0894379 .0218484 -4.09 0.000 -.13226 -.0466159
lpapi1 | .0427737 .041314 1.04 0.301 -.0382003 .1237476
lpapi2 | .006738 .0460603 0.15 0.884 -.0835384 .0970145
lpapi3 | .0578982 .0360641 1.61 0.108 -.0127861 .1285826
lpapi4 | .0260345 .0412539 0.63 0.528 -.0548216 .1068906
lpapi5 | -.0610455 .0698505 -0.87 0.382 -.1979499 .0758589
lpapi6 | -.1901261 .0626519 -3.03 0.002 -.3129215 -.0673306
|
year |
2018 | -.0139564 .0086336 -1.62 0.106 -.0308778 .0029651
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
. probit mp tsnguoi gender Headage2 Headage3 treem bcapmax region1-region5 lpapi1-
lpapi6 i.year if year!=2014&thanhthi==0
Iteration 0: log likelihood = -4834.5845
Iteration 1: log likelihood = -4024.2094
Iteration 2: log likelihood = -3966.9462
Iteration 3: log likelihood = -3962.8588
Iteration 4: log likelihood = -3962.8133
Iteration 5: log likelihood = -3962.8133
Probit regression Number of obs = 13,085
LR chi2(18) = 1743.54
Prob > chi2 = 0.0000
Log likelihood = -3962.8133 Pseudo R2 = 0.1803
------------------------------------------------------------------------------
mp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
tsnguoi | .0799275 .0112784 7.09 0.000 .0578222 .1020328
gender | -.183036 .0397413 -4.61 0.000 -.2609274 -.1051445
Headage2 | -.6980548 .0699389 -9.98 0.000 -.8351325 -.560977
Headage3 | -.4586982 .0749033 -6.12 0.000 -.6055059 -.3118905
treem | .0847732 .026893 3.15 0.002 .0320639 .1374826
bcapmax | -.6114422 .0612747 -9.98 0.000 -.7315384 -.491346
region1 | -.3427617 .0788195 -4.35 0.000 -.4972451 -.1882783
region2 | .6613996 .0621405 10.64 0.000 .5396064 .7831927
region3 | .2152697 .0563863 3.82 0.000 .1047545 .3257849
region4 | .5348081 .0811133 6.59 0.000 .3758289 .6937873
region5 | -.7029721 .1018456 -6.90 0.000 -.9025859 -.5033583
lpapi1 | -1.860085 .2555507 -7.28 0.000 -2.360956 -1.359215
lpapi2 | 1.823537 .3048923 5.98 0.000 1.225959 2.421115
lpapi3 | .8355153 .2274825 3.67 0.000 .3896579 1.281373
lpapi4 | -.5886521 .2528324 -2.33 0.020 -1.084195 -.0931097
lpapi5 | -2.858741 .4947075 -5.78 0.000 -3.82835 -1.889132
lpapi6 | -2.289032 .4164297 -5.50 0.000 -3.10522 -1.472845
|
year |
2018 | .2769518 .0560768 4.94 0.000 .1670434 .3868602
|
_cons | 8.499902 1.015269 8.37 0.000 6.510012 10.48979
------------------------------------------------------------------------------
. margins, dydx(*)
Average marginal effects Number of obs = 13,085
Model VCE : OIM
Expression : Pr(mp), predict()
dy/dx w.r.t. : tsnguoi gender Headage2 Headage3 treem bcapmax region1 region2 region3 region4
region5 lpapi1 lpapi2 lpapi3 lpapi4 lpapi5 lpapi6 2018.year
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
tsnguoi | .0133777 .0018855 7.10 0.000 .0096823 .0170732
220
gender | -.0306353 .0066445 -4.61 0.000 -.0436584 -.0176123
Headage2 | -.1168357 .0115995 -10.07 0.000 -.1395704 -.094101
Headage3 | -.0767738 .0124889 -6.15 0.000 -.1012517 -.052296
treem | .0141888 .0044985 3.15 0.002 .0053719 .0230056
bcapmax | -.1023391 .0102526 -9.98 0.000 -.1224338 -.0822444
region1 | -.0573692 .0132002 -4.35 0.000 -.083241 -.0314973
region2 | .1107006 .0103282 10.72 0.000 .0904578 .1309435
region3 | .0360304 .0094343 3.82 0.000 .0175395 .0545213
region4 | .0895126 .0135479 6.61 0.000 .0629592 .116066
region5 | -.1176588 .0170505 -6.90 0.000 -.1510771 -.0842405
lpapi1 | -.3113287 .042638 -7.30 0.000 -.3948976 -.2277597
lpapi2 | .3052114 .050942 5.99 0.000 .2053668 .405056
lpapi3 | .139843 .0380505 3.68 0.000 .0652654 .2144205
lpapi4 | -.0985247 .042315 -2.33 0.020 -.1814605 -.0155889
lpapi5 | -.4784769 .0826864 -5.79 0.000 -.6405393 -.3164146
lpapi6 | -.3831229 .0696278 -5.50 0.000 -.5195909 -.2466549
|
year |
2018 | .046545 .0094559 4.92 0.000 .0280117 .0650782
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.