Luận án Tính toán cân bằng lỏng - Hơi của Ar, N2, Cl2, CO bằng phương pháp hóa lượng tử và mô phỏng toàn cục monte carlo

- Xây dựng được cấu trúc đime cho các chất nghiên cứu (Ar, N2, Cl2 và CO). - Tính toán được năng lượng bề mặt thế ab initio của 4 cấu hình đặc biệt cho các chất nghiên cứu. Ưu điểm của phương pháp: xây dựng được cấu trúc tổng quát cho các kiểu phân tử khác nhau và tính toán năng lượng bề mặt thế ab initio cho 15 cấu hình không gian trong đó có 4 cấu hình đặc biệt L, H, T và X.

docx152 trang | Chia sẻ: tueminh09 | Ngày: 24/01/2022 | Lượt xem: 570 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Tính toán cân bằng lỏng - Hơi của Ar, N2, Cl2, CO bằng phương pháp hóa lượng tử và mô phỏng toàn cục monte carlo, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nhung, Trần Dương, Phạm Văn Tất, Prediction of second virial coefficients of gases chlorine, nitrogen, carbon monoxide and argon using artificial neural network and virial equation of state, Tạp chí Hóa học, tập 52– số 5A, tr.208-214, ISSN 08667144 (2014). Nguyễn Thành Được, Nguyễn Thị Ái Nhung, Trần Dương, Phạm Văn Tất, Ab initio Intermolecular Potentials and Calculation of Second Virial Coefficients for The Cl2-Cl2 dimer, Smart Science, Vol. 3, No. 4, pp.193-201, ISSN 2308-0477, DOI:10.6493/SmartScience (2015). Nguyễn Thành Được, Nguyễn Thị Ái Nhung, Trần Dương, Phạm Nữ Ngọc Hân, Phạm Văn Tất, Vapor-liquid equilibria of binary system CO and Cl2 in mixture of greenhouse gases using quantum calculation., Tạp chí Hóa học, tập 54 – số 2, tr.145-152, DOI: 10.15625/0866-7144.2016-00250, (2016). Nguyễn Thành Được, Trần Dương, Phạm Văn Tất, Tính toán hệ số virial bậc hai của các khí Cl2, N2, CO và Ar kết hợp phương trình trạng thái virial và mô hình đa biến, Tạp chí Khoa học và Công nghệ -Đại học Khoa học Huế, tập 13, số 2, tr.25-37, ISSN 2354-0842, (2018). Nguyễn Thành Được, Trần Dương, Phạm Văn Tất, Tính toán hệ số virial và áp suất hơi của hệ CO – CO từ các tính toán lượng tử ab initio, Tạp chí Khoa học Đại học Huế: Khoa học Tự nhiên, tập 128, số 1A, tr.13-25, ISSN 1859-1388, DOI: 10.26459/hueuni-jns.v128i1A.5055, (2019). TÀI LIỆU THAM KHẢO [1]. Pham Van Tat (2009), “Prediction of vapor – liquid equilibria of binary mixtures using quantum calculations and activity coefficients models”, Tạp chí Hóa học, tập 47 số 5 trang 547 – 551. [2]. Pham Van Tat, U.K. Deiters (2009), “Monte Carlo simulation of vapor – liquid equilibria of hydrogen using ab initio intermolecular potentials”, Tạp chí Hóa học, tập 47 số 5 trang 529 – 534. [3]. Pham Van Tat, U.K. Deiters (2015), “Calculation of intermolecular potentials for H2-H2 and H2-O2 dimers ab initio and prediction of second virial coefficients”, Chemical Physics, Volume 457, 18 August 2015, p. 171-179. [4]. A. Vetere (2005), “An improved method to predict second cross virial coefficients of pure compounds”, Fluid Phase Equilib., 204:15 – 20. [5]. A. Stone (2004), “Intermolecular Forces”, Clarendon Press, Oxford. [6]. A. D. Becke (1986)., J. Chem. Phys., 84, 4524. [7]. A. D. Becke. (1986), “Density functional calculations of molecular bond energies”, J. Chem. Phys., 84, 4524. [8]. A. E. Nasrabad, R. Laghaei, U. K. Deiters (2004), “Prediction of the thermophysical properties of pure neon, pure argon, and the binary mixtures neon-argon and argon-krypton by Monte Carlo simulation using ab initio potentials”, J. Chem. Phys. 121, 6423. [9]. A. E. Nasrabad, R. Laghaei (2006), “Computational studies on thermodynamic properties, effective diameters, and free volume of argon using an ab initio potential”, J. Chem. Phys. 125, 084510. [10]. A. I. Victorov, A. Fredenslund (1991), Fluid Phase Equilib, 66, 77 – 101. [11]. A. K. Sum and S. I. Sandler (2002), “Ab initio pair potentials and phase equilibria predictions of halogenated compounds”, Fluid Phase Equilib., 199:5 – 13. [12]. A. M. Michels, W. de Graaf and C. A. ten Seldam (1960), “Virial coefficients of hydrogen and deuterium at temperatures between -1750C and +1500C conclusion from the 2nd virial coefficients with regards to the intermolecular potential”, Physica, 26:393. [13]. A. Z. Panagiotopoulos (1987), “Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble”, Mol. Phys., 61, 813-826. [14]. A. Z. Panagiotopoulos, Computational Methodologies and Potentials for Phase Equilibria project homepage: [15]. A.J. Stone (1996), “The theory of Intermolecular Forces”, Published in the United State by Oxford University Press Inc., New York. [16]. Accelrys (2007), “MS Modeling Getting Started”, Release 4.0. Accelrys Software Inc.: San Diego, CA, January. [17].Axel D.Becke (1988), “Density-functional exchange-energy approximation with correct asymptotic behavior”, Physical Review A 38 (6): 3098. [18]. B. Delley (1990), “An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules”, J. Chem. Phys, 92: 508–517. [19]. Chin-Teng Lin, C.S. George Lee (1996), “Neural fuzzy systems: a neurofuzzy synergism to intelligent systems”, Prentice-Hall Inc. [20]. Christopher J Cramer (2004), “Essential of Computational Chemistry”, Theories and Models, 2nd edition, John Wiley & Sons. [21]. D. Peng, D. B. Robinson, Ind. Eng (1976), Chem. Fundam. 15, 59. [22]. D. E. Makarov and H. Metiu (1998), “Fitting potential – energy surfaces: A search in the function space by directed genetic programming”, J. Chem. Phys., 2:590 – 598. [23]. D. E. Winterbone (1997), “Advanced Thermodynamics for Engineers”, John Wiley and Sons, New York. [24]. D. R. Lide (2000), “Handbook of Chemistry and Physics”, CRC Press, Raton, 85th edition. [25]. D. S. Wilson and L. L. Lee. (2005), “Chemical potentials and phase equilibria of Lennard-Jones mixtures: A self-consistent integral equation approach.”, J. Chem. Phys. 123, 044512. [26]. D. S. H. Wong, S. I. Sandler (1992), AIChE J.38, 671. [27]. David C.Young (2001), “Computational Chemistry – A Practical Guide for Applying Techniques to Real World Problems”, Wiley – Interscience, New York. [28]. David C. Langreth, M J. Mehl (1983), “Beyond the local-density approximation in calculations of ground-state electronic properties”, Physical Review B 28 (4): 1809. [29]. E. Mullins, R. Oldland, Y.A. Liu,; S. Wang, S. I. Sandler, C.C. Chen, M. Zwolak, K.C. Seavey (2006), “Sigma-Profile Database for Using COSMO-Based Thermodynamic Methods”, Ind. Eng. Chem. Res., 45. [30]. E. Sapei, A. Zaytseva, P. Uusi – Kyyny, K. I. Keskinen, J. Aittamaa (2007), “Vapor Liquid Equilibrium for Binary Systems”, Fluid Phase Equilibria, 378 – 3812(07), 00334 – 2. [31]. E. Blake Freedman (1982), “A Thermodynamic Code Based on Tiger: User’s Guide and Manual”, Technical Report ARBRL–TR–02411, Ballistic Research Laboratory, US Army Armament Research and Development Command, AD/A, 121–259. [32]. F. C. William, F. R. Luiz, R. Gargano, and M. S. Geraldo (2005), “Fitting potential energy surface of reactive system via genetic algorithm”, Compt. Physics, eprint arXiv:physics/0511131, 1:1 – 10. [33]. F. C. H. Wong, J. J. Gottlieb., and L.S. Lussier (2003), “Chemical Equilibrium Analysis of Combustion Products at Constant Volume”, Defence R & D Canada – Valcartier Technical Report DRDC Valcartier, tr. 2003-375. [34]. Frank Jensen (2007), “Introduction to Computational Chemistry”, 2nd edition, John Wiley & Sons. [35]. G.M. Wilson (1964), “Vapor-Liquid Equilibria. XI. A New Expression for the Excess Free Energy of Mixing”, J. Am. Chem. Soc., 86, 127-130. [36]. H. Renon and J.M. Prausnitz (1968), “Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures”, AIChE J., 14, 135-144. [37]. H. Hotelling (1933), “Analysis of a complex of statistical variables into principal components”, Journal of Educational Psychology, 24, 417–441, and 498–520. [38]. H. P. William, S. A. Teukolsky, T. V. William, and B. P. Flannery (1992), “Numerical Recipes in C: The Art of Scientific Computing”, Cambridge, New York. [39]. I. T. Jolliffe (2002), “Principal Component Analysis”, second edition, Springer-Verlag, ISBN 978-0-387-95442-4. [40]. J. Stoll, J. Vrabec, H. Hasse (2003), “A set of molecular models for carbon monoxide and halogenated hydrocarbons”, J. Chem. Phys. 119, 11396. [41]. J. Gmehling, U. Onken,W. Arlt (1982), “Vapour–Liquid Equilibrium Data Collection”, DECHEMA Chem. Data Ser., DECHEMA, Frankfurt. [42]. J. Cioslowski (2001),“Quantum Mechanical Prediction of Thermochemical Data”, Kluwer Academic Publishers, New York. [43]. J. Zupan., J. Gasteiger. (1992), “Neural networks in Chemistry and Drug Design”, Wiley-VCH. [44]. J. Hertz, A. Krogh, and R.G. Palmer. (1991), “Introduction to the Theory of Neural Computation”, New York: Addison-Wesley. [45]. J. B. Foresman and A. Frisch (1996), “Exploring Chemistry with Electronic Structure Methods”, Second Edition, Gaussian, Wallingford. [46]. J. E. Lennard – Jones (1924), Proc. Royal. Soc., 106:463. [47]. J. H. Dymond and E. B. Smith (1980), “The Virial Coefficients of Pure Gases and Mixtures”, Clarendon Press, Oxford. [48]. J. P. Perdew, Y. Wang (1992)., Phys. Rev. B, 45, 13244. [49]. J. P. Perdew, Y. Wang. (1992), “Accurate and simple analytic representation of the electron-gas correlation energy”, Phys. Rev. B, 45, 13244. [50]. John P. Perdew, J A. Chevary, SH. Vosko, Koblar A. Jackson, Mark R. Pederson, D J . Singh, Carlos Fiolhais (1992), “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation”, Physical Review B 46 (11): 6671. [51]. K. Leonhard and U. K. Deiters (2000), “Monte Carlo simulations of neon and argon using ab initio potential”, Mol. Phys., 98:1603 – 1616. [52]. K. Leonhard and U. K. Deiters (2002), “Monte Carlo simulations of nitrogen using an ab initio potential, Mol. Phys., 100:2571 – 2585. [53]. K. T. Tang and J. P. Toennies (1984), J. Chem. Phys., 80, 3726-3741. [54]. K. T. Tang and J. P. Toennies (1984), “An improved simple model for the van der waals potential based on universal damping functions for the dispersion coefficients”, J. Chem. Phys., 80:3726 – 3741. [55]. K.P. Huber, G. Herzberg (1979), “Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules”, Van Nostrand Reinhold Co. [56]. Klamt (1998), “A. COSMO and COSMO-RS”, In Encyclopedia of Computational Chemistry; Schleyer, P. v. R., Ed.; Chichester. [57]. M. Head Gordon (1996), “Quantum chemistry and molecular processes”, J. Phys. Chem., 100:13213–13225. [58]. M. Abbaspour, E. K. Goharshadi (2006), “Determination of potential energy functions of CO–CO, CO2–CO2, and N2O–N2O and calculation of their transport properties”, Chemical Physics 330, 313–325. [59]. M. G. Martin and J. I. Siepmann (1998), “Calculating Gibbs free energies of transfer from Gibbs ensemble Monte Carlo simulations”, Theor. Chem. Acc., 99:347 – 350. [60]. M. H. Karimi-Jafari, Mitra Ashouria and Azadeh Yeganeh-Jabri (2009), “Coping with the anisotropy in the analytical representation of an ab initio potential energy surface for the Cl2 dimer”, Phys.Chem. Chem.Phys, 11, 5561–556. [61]. M. L. Leininger, W. D. Allen, H. F. Schaefer, and C. D. Sherrill (2000), “Is Møller – Plesset perturbation theory a convergent ab initio method?”, J. Chem. Phys, 112:9213 – 922. [62]. M. P. Allen, D. J. Tildesley (1991), “Computer Simulation of Liquids”, Clarendon Press Oxford. [63]. Michael Greenacre (1983), “Theory and Applications of Correspondence Analysis”, London: Academic Press, ISBN 978-0-12-299050-2. [64]. N. R. Draper and H. Smith (1998), “Applied Regression Analysis”, Wiley-Interscience. [65]. P. Sun Yong and J. Shin Lee (2002), “Basis set limit binding energies of dimers derived from basis set convergence of monomer energies”, J. Chem. Phys., 116:5389 – 5394. [66]. P. E. S. Wormer (2005), “Second virial coefficients of asymmetric top molecules”, J. Phys. Chem., 122:184301 – 184307. [67]. P. M. Morse (1929), “Diatomic molecules according to the wave mechanics”, Phys. Rev., 34:57 – 64. [68]. P. S. Y. Cheung and J. G. Powles (1975), “Properties of liquid – nitrogen. 4. Computer – simulation”, Mol. Phys., 30:921 – 949. [69]. R. Xiong, S. I. Sandler, and R. I. Burnett (2014), “An Improvement to COSMO-SAC for Predicting Thermodynamic Properties”, Ind. Eng. Chem. Res., 53, 8265–8278. [70]. R. Stryjek; J. H. Vera (1986), “PRSV: An improved Peng–Robinson equation of state for pure compounds and mixtures”, The Canadian Journal of Chemical Engineering, 64 (2): 323–333. [71]. R. A. Kendall, T. H. Dunning, Jr., R. J. Harrison (1992), J. Chem. Phys., 96 6796-6806. [72]. R. J. Sadus (2002), “Molecular Simulation of Fluids, Theory, algorithms and Object-Orientation”, Elservier, New York. [73]. R. T. Pack (1983), J. Chem. Phys., 78, 7217-7222. [74]. R. T. Pack (1983), “First quantum correction to second virial coefficients for anisotropic interactions: simple, corrected formula”, J. Chem. Phys., 78:7217 – 7222. [75]. R.D. McCarty (1989), “Correlations for the Thermophysical Properties of Carbon Monoxide”, National Institute of Standards and Technology, Boulder, CO. [76]. Gaussian03TM (2003), Revision B.02. Gaussian Inc, Wallingford, CT, USA. [77]. S. Gordon and B.J. McBride (1971), “Computer Program for Computation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations”, National Aeronautics and Space Administration (NASA), NASA-SP-273. [78]. S. F. Boys and F. Bernardi (1970), Mol. Phys., 19, 553 – 566. [79]. S. J. Vosko, L. Wilk, M. Nusair (1980), “A critical analysis”, Can. J. Phys., 58, 1200-1211. [80]. S. L. Garrison and S. I. Sandler (2002), “On the use of ab initio interaction energies for the accurate calculation of thermodynamic properties”, J. Chem. Phys.,117:10571 – 10580. [81]. S.T. Lin (2000), Quantum Mechanical Approaches to the Prediction of Phase Equilibria: Solvation Thermodynamics and Group Contribution Methods, Ph.D. Dissertation, University of Delaware, Newark, DE. [82]. S.T. Lin, S.I. Sandler (2002), “A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model”, Ind. Eng. Chem. Res., 41, 899. [83]. T. Korona, H. L. Williams, R. Bukowski, B. Jeziorski, and K. Szalewicz (1997), “Helium dimer potential from symmetry – adapted perturbation theory calculations using large gaussian geminal and orbital basis sets”, J. Chem. Phys., 106:5109 – 5122. [84]. T. Helgaker, P. Jorgensen, and J. Olsen (2000), “Molecular Electronic – Structure Theory”, John Wiley and Sons, New York. [85]. T. Spyriouni, I. G. Economou, and D. N. Theodorou (1998), “Molecular simulation of the pure n – hexadecane vapor – liquid equilibria at elevated temperature”, Macromolecules, 31:1430 – 1431. [86]. T. H. Dunning Jr (1970), “Gaussian basis function for use in molecular calculations. I. Contraction of atomic basis sets for the first – row atom”, J. Chem. Phys., 53:2823. [87]. U. K. Deiters (1981), “A new semiempirical equation of state for fluids”, Chem. Eng. Sci., 36, 1139. [88]. W. Hardle (1990), Applied Nonparametric Regression, ISBN 0-521-42950-1. [89]. W. Squire (1970), “Integration for Engineers and Scientists”, Elsevier, New York. [90]. W. F. Wang (2003), “Atomic potential parameters for H2 and D2: quantum corrections in the calculation of second virial coefficients”, J. Quanti. Spectr. And Radia. Tran., 76:23 – 30. [91]. W. F. Wang (2003), J. Quant. Spectrosc. Radiat. Transfer, 76, 23-30. [92]. National Institute of Standards and Technology (NIST), [93]. U. K. Deiters, ThermoC project homepage: PHỤ LỤC Bảng 1. Các giá trị năng lượng ab initio cho tương tác N2-N2 r/Å Tọa độ góc Năng lượng ab initio a b f E-pVDZ E-pVTZ E-pV23Z 3.6 0 0 0 12539.103 11145.087 10536.324 3.8 0 0 0 5781.667 5084.046 4833.366 4 0 0 0 2548.622 2195.579 2138.254 4.2 0 0 0 1035.626 854.876 852.161 4.4 0 0 0 351.778 258.320 241.887 4.6 0 0 0 60.550 12.024 -39.016 4.8 0 0 0 -49.751 -74.734 -158.314 5 0 0 0 -80.297 -92.716 -198.792 5.2 0 0 0 -78.402 -84.008 -201.814 5.4 0 0 0 -65.456 -67.329 -188.145 5.6 0 0 0 -50.583 -50.411 -168.145 5.8 0 0 0 -37.259 -35.990 -146.872 6 0 0 0 -26.471 -24.648 -126.664 6.2 0 0 0 -18.189 -16.125 -108.481 6.4 0 0 0 -12.031 -9.910 -92.592 6.6 0 0 0 -7.554 -5.480 -78.937 6.8 0 0 0 -4.353 -2.383 -67.314 7 0 0 0 -2.100 -0.264 -57.472 7.2 0 0 0 -0.541 1.150 -49.159 7.4 0 0 0 0.516 2.060 -42.143 7.6 0 0 0 1.213 2.615 -36.220 7.8 0 0 0 1.653 2.920 -31.212 8 0 0 0 1.911 3.054 -26.970 8.2 0 0 0 2.042 3.070 -23.370 8.4 0 0 0 2.084 3.009 -20.307 8.6 0 0 0 2.066 2.897 -17.694 8.8 0 0 0 2.009 2.756 -15.460 9 0 0 0 1.926 2.597 -13.543 9.2 0 0 0 1.827 2.431 -11.895 9.4 0 0 0 1.721 2.265 -10.474 9.6 0 0 0 1.612 2.101 -9.246 9.8 0 0 0 1.504 1.944 -8.181 10 0 0 0 1.398 1.796 -7.255 10.2 0 0 0 1.296 1.655 -6.449 10.4 0 0 0 1.200 1.525 -5.745 10.6 0 0 0 1.109 1.403 -5.128 10.8 0 0 0 1.024 1.291 -4.588 11 0 0 0 0.945 1.187 -4.112 11.2 0 0 0 0.872 1.092 -3.692 11.4 0 0 0 0.804 1.004 -3.322 11.6 0 0 0 0.742 0.924 -2.994 11.8 0 0 0 0.684 0.850 -2.703 12 0 0 0 0.631 0.783 -2.445 3.6 45 0 0 4365.278 3558.331 3211.420 3.8 45 0 0 1744.932 1297.687 1090.264 4 45 0 0 571.181 275.283 175.659 4.2 45 0 0 79.451 -143.779 -197.774 4.4 45 0 0 -100.720 -280.396 -327.749 4.6 45 0 0 -145.654 -293.225 -350.228 4.8 45 0 0 -137.137 -258.332 -327.960 5 45 0 0 -111.623 -210.507 -289.832 5.2 45 0 0 -84.284 -164.400 -248.833 5.4 45 0 0 -60.613 -125.183 -210.454 5.6 45 0 0 -41.926 -93.814 -176.665 5.8 45 0 0 -27.903 -69.568 -147.835 6 45 0 0 -17.712 -51.204 -123.644 6.2 45 0 0 -10.475 -37.466 -103.525 6.4 45 0 0 -5.434 -27.264 -86.863 6.6 45 0 0 -1.989 -19.722 -73.084 6.8 45 0 0 0.315 -14.161 -61.683 7 45 0 0 1.810 -10.067 -52.236 7.2 45 0 0 2.739 -7.057 -44.389 7.4 45 0 0 3.275 -4.847 -37.853 7.6 45 0 0 3.542 -3.227 -32.392 7.8 45 0 0 3.627 -2.043 -27.814 8 45 0 0 3.591 -1.182 -23.964 8.2 45 0 0 3.476 -0.559 -20.714 8.4 45 0 0 3.315 -0.114 -17.963 8.6 45 0 0 3.126 0.201 -15.624 8.8 45 0 0 2.924 0.419 -13.631 9 45 0 0 2.720 0.565 -11.927 9.2 45 0 0 2.518 0.658 -10.464 9.4 45 0 0 2.325 0.713 -9.206 9.6 45 0 0 2.140 0.740 -8.120 9.8 45 0 0 1.967 0.746 -7.180 10 45 0 0 1.806 0.738 -6.364 10.2 45 0 0 1.657 0.719 -5.654 10.4 45 0 0 1.519 0.694 -5.034 10.6 45 0 0 1.393 0.665 -4.492 10.8 45 0 0 1.277 0.632 -4.017 11 45 0 0 1.170 0.599 -3.599 11.2 45 0 0 1.073 0.565 -3.231 11.4 45 0 0 0.985 0.532 -2.907 11.6 45 0 0 0.904 0.499 -2.619 11.8 45 0 0 0.830 0.468 -2.364 12 45 0 0 0.762 0.438 -2.138 3.2 90 0 0 7765.237 6374.009 5845.719 3.4 90 0 0 3285.140 2450.091 1971.607 3.6 90 0 0 1164.843 652.732 416.915 3.8 90 0 0 230.450 -107.015 -179.500 4 90 0 0 -132.011 -378.103 -376.332 4.2 90 0 0 -233.722 -431.377 -409.249 4.4 90 0 0 -227.055 -396.819 -379.145 4.6 90 0 0 -183.332 -334.336 -329.128 4.8 90 0 0 -133.710 -269.750 -277.082 5 90 0 0 -90.158 -212.811 -229.822 5.2 90 0 0 -55.954 -166.047 -189.354 5.4 90 0 0 -30.784 -129.011 -155.687 5.6 90 0 0 -13.106 -100.234 -128.083 5.8 90 0 0 -1.186 -78.087 -105.605 6 90 0 0 6.509 -61.101 -87.347 6.2 90 0 0 11.203 -48.071 -72.514 6.4 90 0 0 13.821 -38.048 -60.442 6.6 90 0 0 15.036 -30.307 -50.590 6.8 90 0 0 15.326 -24.296 -42.522 7 90 0 0 15.028 -19.601 -35.890 7.2 90 0 0 14.371 -15.912 -30.416 7.4 90 0 0 13.512 -12.996 -25.881 7.6 90 0 0 12.556 -10.675 -22.107 7.8 90 0 0 11.570 -8.818 -18.955 8 90 0 0 10.598 -7.323 -16.311 8.2 90 0 0 9.666 -6.113 -14.084 8.4 90 0 0 8.789 -5.127 -12.203 8.6 90 0 0 7.975 -4.320 -10.606 8.8 90 0 0 7.227 -3.656 -9.248 9 90 0 0 6.543 -3.108 -8.087 9.2 90 0 0 5.922 -2.652 -7.092 9.4 90 0 0 5.359 -2.272 -6.237 9.6 90 0 0 4.850 -1.953 -5.499 9.8 90 0 0 4.391 -1.686 -4.861 10 90 0 0 3.978 -1.459 -4.308 10.2 90 0 0 3.606 -1.268 -3.826 10.4 90 0 0 3.271 -1.105 -3.406 10.6 90 0 0 2.970 -0.965 -3.039 10.8 90 0 0 2.699 -0.846 -2.717 11 90 0 0 2.455 -0.744 -2.434 11.2 90 0 0 2.235 -0.655 -2.185 11.4 90 0 0 2.037 -0.579 -1.965 11.6 90 0 0 1.858 -0.513 -1.771 11.8 90 0 0 1.696 -0.455 -1.598 12 90 0 0 1.551 -0.405 -1.445 3.4 45 45 0 5502.547 4694.777 4395.000 3.6 45 45 0 2260.608 1895.727 1732.834 3.8 45 45 0 798.620 620.402 574.112 4 45 45 0 171.218 75.588 77.155 4.2 45 45 0 -73.865 -129.469 -123.656 4.4 45 45 0 -150.165 -183.849 -191.714 4.6 45 45 0 -156.629 -176.839 -201.505 4.8 45 45 0 -137.801 -149.085 -187.319 5 45 45 0 -112.807 -117.997 -164.877 5.2 45 45 0 -89.157 -90.207 -141.203 5.4 45 45 0 -69.253 -67.568 -119.227 5.6 45 45 0 -53.383 -49.980 -99.970 5.8 45 45 0 -41.070 -36.675 -83.586 6 45 45 0 -31.643 -26.761 -69.865 6.2 45 45 0 -24.466 -19.439 -58.470 6.4 45 45 0 -19.007 -14.057 -49.042 6.6 45 45 0 -14.846 -10.111 -41.250 6.8 45 45 0 -11.663 -7.221 -34.808 7 45 45 0 -9.215 -5.105 -29.471 7.2 45 45 0 -7.323 -3.556 -25.041 7.4 45 45 0 -5.853 -2.424 -21.351 7.6 45 45 0 -4.703 -1.597 -18.269 7.8 45 45 0 -3.798 -0.995 -15.686 8 45 45 0 -3.083 -0.558 -13.514 8.2 45 45 0 -2.515 -0.244 -11.680 8.4 45 45 0 -2.060 -0.020 -10.128 8.6 45 45 0 -1.695 0.137 -8.810 8.8 45 45 0 -1.401 0.245 -7.686 9 45 45 0 -1.162 0.317 -6.724 9.2 45 45 0 -0.967 0.362 -5.900 9.4 45 45 0 -0.808 0.387 -5.190 9.6 45 45 0 -0.677 0.398 -4.578 9.8 45 45 0 -0.570 0.400 -4.048 10 45 45 0 -0.481 0.394 -3.588 10.2 45 45 0 -0.407 0.383 -3.187 10.4 45 45 0 -0.345 0.368 -2.838 10.6 45 45 0 -0.294 0.352 -2.533 10.8 45 45 0 -0.251 0.334 -2.265 11 45 45 0 -0.214 0.316 -2.029 11.2 45 45 0 -0.184 0.298 -1.822 11.4 45 45 0 -0.158 0.280 -1.638 11.6 45 45 0 -0.136 0.263 -1.476 11.8 45 45 0 -0.117 0.246 -1.333 12 45 45 0 -0.101 0.230 -1.205 2.8 90 90 0 5963.928 5186.633 4938.626 3 90 90 0 2414.176 1976.161 1592.432 3.2 90 90 0 792.165 525.548 370.346 3.4 90 90 0 96.858 -73.426 -61.166 3.6 90 90 0 -167.328 -278.743 -193.026 3.8 90 90 0 -240.168 -313.627 -212.801 4 90 90 0 -234.620 -282.901 -193.652 4.2 90 90 0 -201.990 -233.375 -164.068 4.4 90 90 0 -164.270 -184.299 -134.705 4.6 90 90 0 -129.921 -142.348 -109.071 4.8 90 90 0 -101.426 -108.803 -87.861 5 90 90 0 -78.818 -82.877 -70.744 5.2 90 90 0 -61.278 -63.189 -57.086 5.4 90 90 0 -47.811 -48.357 -46.235 5.6 90 90 0 -37.505 -37.210 -37.615 5.8 90 90 0 -29.610 -28.819 -30.754 6 90 90 0 -23.541 -22.479 -25.273 6.2 90 90 0 -18.850 -17.662 -20.876 6.4 90 90 0 -15.201 -13.980 -17.332 6.6 90 90 0 -12.344 -11.147 -14.462 6.8 90 90 0 -10.091 -8.950 -12.125 7 90 90 0 -8.303 -7.235 -10.213 7.2 90 90 0 -6.873 -5.887 -8.641 7.4 90 90 0 -5.722 -4.819 -7.343 7.6 90 90 0 -4.790 -3.969 -6.265 7.8 90 90 0 -4.031 -3.287 -5.367 8 90 90 0 -3.409 -2.737 -4.615 8.2 90 90 0 -2.896 -2.291 -3.982 8.4 90 90 0 -2.471 -1.926 -3.448 8.6 90 90 0 -2.118 -1.628 -2.996 8.8 90 90 0 -1.822 -1.381 -2.611 9 90 90 0 -1.573 -1.177 -2.283 9.2 90 90 0 -1.364 -1.007 -2.001 9.4 90 90 0 -1.186 -0.865 -1.759 9.6 90 90 0 -1.035 -0.745 -1.551 9.8 90 90 0 -0.906 -0.645 -1.371 10 90 90 0 -0.795 -0.560 -1.215 10.2 90 90 0 -0.700 -0.487 -1.079 10.4 90 90 0 -0.618 -0.425 -0.960 10.6 90 90 0 -0.547 -0.373 -0.857 10.8 90 90 0 -0.485 -0.327 -0.766 11 90 90 0 -0.432 -0.288 -0.686 11.2 90 90 0 -0.385 -0.255 -0.616 11.4 90 90 0 -0.344 -0.225 -0.554 11.6 90 90 0 -0.308 -0.200 -0.499 11.8 90 90 0 -0.276 -0.178 -0.450 12 90 90 0 -0.248 -0.159 -0.407 3.4 45 45 45 4652.272 3715.368 3717.804 3.6 45 45 45 1873.661 1388.879 1373.669 3.8 45 45 45 603.749 346.650 373.897 4 45 45 45 59.203 -80.674 -39.812 4.2 45 45 45 -146.631 -224.546 -195.064 4.4 45 45 45 -201.406 -245.591 -237.131 4.6 45 45 45 -194.107 -219.363 -231.501 4.8 45 45 45 -165.487 -179.808 -207.820 5 45 45 45 -133.161 -141.012 -179.325 5.2 45 45 45 -103.948 -107.905 -151.667 5.4 45 45 45 -79.841 -81.435 -126.989 5.6 45 45 45 -60.830 -60.997 -105.850 5.8 45 45 45 -46.199 -45.521 -88.122 6 45 45 45 -35.082 -33.927 -73.421 6.2 45 45 45 -26.688 -25.288 -61.295 6.4 45 45 45 -20.363 -18.863 -51.315 6.6 45 45 45 -15.592 -14.084 -43.098 6.8 45 45 45 -11.986 -10.524 -36.325 7 45 45 45 -9.250 -7.866 -30.727 7.2 45 45 45 -7.166 -5.876 -26.087 7.4 45 45 45 -5.572 -4.383 -22.230 7.6 45 45 45 -4.347 -3.259 -19.011 7.8 45 45 45 -3.401 -2.411 -16.316 8 45 45 45 -2.668 -1.770 -14.052 8.2 45 45 45 -2.097 -1.285 -12.142 8.4 45 45 45 -1.651 -0.918 -10.526 8.6 45 45 45 -1.301 -0.640 -9.154 8.8 45 45 45 -1.026 -0.430 -7.984 9 45 45 45 -0.808 -0.271 -6.985 9.2 45 45 45 -0.636 -0.152 -6.127 9.4 45 45 45 -0.500 -0.063 -5.390 9.6 45 45 45 -0.392 0.002 -4.753 9.8 45 45 45 -0.305 0.050 -4.203 10 45 45 45 -0.236 0.085 -3.725 10.2 45 45 45 -0.182 0.109 -3.309 10.4 45 45 45 -0.138 0.125 -2.946 10.6 45 45 45 -0.103 0.136 -2.629 10.8 45 45 45 -0.075 0.141 -2.351 11 45 45 45 -0.053 0.144 -2.106 11.2 45 45 45 -0.035 0.143 -1.891 11.4 45 45 45 -0.021 0.141 -1.701 11.6 45 45 45 -0.010 0.138 -1.532 11.8 45 45 45 -0.002 0.133 -1.383 12 45 45 45 0.005 0.128 -1.251 2.8 90 90 90 5041.144 4306.347 4079.585 3 90 90 90 1960.021 1556.921 1180.538 3.2 90 90 90 583.633 317.223 156.993 3.4 90 90 90 16.745 -185.854 -179.746 3.6 90 90 90 -181.958 -346.991 -263.225 3.8 90 90 90 -223.249 -360.525 -256.720 4 90 90 90 -204.265 -318.428 -222.465 4.2 90 90 90 -167.625 -261.938 -183.744 4.4 90 90 90 -130.571 -207.954 -148.601 4.6 90 90 90 -99.000 -162.180 -119.163 4.8 90 90 90 -74.045 -125.494 -95.365 5 90 90 90 -55.056 -96.933 -76.434 5.2 90 90 90 -40.894 -75.022 -61.473 5.4 90 90 90 -30.436 -58.320 -49.666 5.6 90 90 90 -22.741 -45.602 -40.332 5.8 90 90 90 -17.079 -35.897 -32.929 6 90 90 90 -12.900 -28.459 -27.031 6.2 90 90 90 -9.803 -22.726 -22.309 6.4 90 90 90 -7.495 -18.279 -18.510 6.6 90 90 90 -5.765 -14.806 -15.436 6.8 90 90 90 -4.460 -12.073 -12.936 7 90 90 90 -3.470 -9.910 -10.892 7.2 90 90 90 -2.714 -8.184 -9.213 7.4 90 90 90 -2.133 -6.798 -7.827 7.6 90 90 90 -1.684 -5.679 -6.677 7.8 90 90 90 -1.336 -4.769 -5.719 8 90 90 90 -1.063 -4.025 -4.917 8.2 90 90 90 -0.850 -3.413 -4.242 8.4 90 90 90 -0.681 -2.907 -3.673 8.6 90 90 90 -0.548 -2.486 -3.191 8.8 90 90 90 -0.442 -2.135 -2.781 9 90 90 90 -0.357 -1.841 -2.431 9.2 90 90 90 -0.289 -1.593 -2.131 9.4 90 90 90 -0.234 -1.384 -1.874 9.6 90 90 90 -0.190 -1.205 -1.652 9.8 90 90 90 -0.155 -1.054 -1.460 10 90 90 90 -0.126 -0.924 -1.293 10.2 90 90 90 -0.102 -0.812 -1.149 10.4 90 90 90 -0.083 -0.716 -1.022 10.6 90 90 90 -0.068 -0.633 -0.912 10.8 90 90 90 -0.055 -0.561 -0.815 11 90 90 90 -0.044 -0.499 -0.730 11.2 90 90 90 -0.036 -0.444 -0.656 11.4 90 90 90 -0.029 -0.396 -0.590 11.6 90 90 90 -0.023 -0.355 -0.531 11.8 90 90 90 -0.018 -0.318 -0.479 12 90 90 90 -0.014 -0.285 -0.433 Bảng 2. Các giá trị năng lượng ab initio cho tương tác CO-CO r/Å Tọa độ góc Năng lượng ab initio a b f E-pVDZ E-pVTZ E-pV23Z 3.6 0 0 0 30922.854 28522.526 27512.396 3.8 0 0 0 16903.904 15449.208 14836.597 4 0 0 0 9110.992 8253.564 7892.438 4.2 0 0 0 4836.918 4343.121 4135.190 4.4 0 0 0 2528.035 2248.949 2131.461 4.6 0 0 0 1303.207 1147.327 1081.710 4.8 0 0 0 668.103 580.883 544.152 5 0 0 0 348.439 298.268 277.113 5.2 0 0 0 193.880 162.967 149.908 5.4 0 0 0 123.226 101.892 92.864 5.6 0 0 0 93.425 76.624 69.513 5.8 0 0 0 82.216 67.474 61.243 6 0 0 0 78.495 64.711 58.897 6.2 0 0 0 77.025 63.791 58.223 6.4 0 0 0 75.563 62.799 57.442 6.6 0 0 0 73.336 61.092 55.965 6.8 0 0 0 70.242 58.603 53.738 7 0 0 0 66.446 55.486 50.913 7.2 0 0 0 62.188 51.956 47.693 7.4 0 0 0 57.696 48.216 44.271 7.6 0 0 0 53.158 44.427 40.799 7.8 0 0 0 48.712 40.711 37.390 8 0 0 0 44.453 37.149 34.120 8.2 0 0 0 40.440 33.792 31.037 8.4 0 0 0 36.705 30.668 28.168 8.6 0 0 0 33.262 27.789 25.523 8.8 0 0 0 30.111 25.153 23.101 9 0 0 0 27.241 22.753 20.897 9.2 0 0 0 24.638 20.577 18.898 9.4 0 0 0 22.285 18.610 17.091 9.6 0 0 0 20.161 16.835 15.461 9.8 0 0 0 18.248 15.236 13.992 10 0 0 0 16.525 13.797 12.670 10.2 0 0 0 14.976 12.502 11.481 10.4 0 0 0 13.582 11.338 10.412 10.6 0 0 0 12.328 10.291 9.450 10.8 0 0 0 11.201 9.349 8.585 11 0 0 0 10.186 8.501 7.806 11.2 0 0 0 9.272 7.738 7.106 11.4 0 0 0 8.448 7.050 6.474 11.6 0 0 0 7.705 6.430 5.905 11.8 0 0 0 7.035 5.871 5.391 12 0 0 0 6.430 5.366 4.927 12.2 0 0 0 5.883 4.909 4.508 12.4 0 0 0 5.388 4.496 4.128 12.6 0 0 0 4.939 4.121 3.784 12.8 0 0 0 4.533 3.782 3.473 13 0 0 0 4.164 3.474 3.190 13.2 0 0 0 3.829 3.195 2.933 13.4 0 0 0 3.524 2.941 2.700 13.6 0 0 0 3.247 2.709 2.488 13.8 0 0 0 2.995 2.498 2.294 14 0 0 0 2.764 2.306 2.117 3.6 0 45 0 10214.445 8962.072 8434.642 3.8 0 45 0 5265.437 4559.201 4261.699 4 0 45 0 2551.138 2175.327 2017.030 4.2 0 45 0 1112.371 927.123 849.118 4.4 0 45 0 383.845 303.167 269.209 4.6 0 45 0 40.169 13.405 2.143 4.8 0 45 0 -101.990 -103.467 -104.093 5 0 45 0 -143.640 -135.250 -131.732 5.2 0 45 0 -138.976 -128.501 -124.109 5.4 0 45 0 -116.076 -107.041 -103.254 5.6 0 45 0 -88.748 -82.418 -79.764 5.8 0 45 0 -63.210 -59.728 -58.266 6 0 45 0 -41.791 -40.803 -40.382 6.2 0 45 0 -24.929 -25.915 -26.318 6.4 0 45 0 -12.233 -14.668 -15.675 6.6 0 45 0 -3.018 -6.444 -7.863 6.8 0 45 0 3.435 -0.609 -2.283 7 0 45 0 7.776 3.400 1.589 7.2 0 45 0 10.541 6.045 4.183 7.4 0 45 0 12.156 7.690 5.841 7.6 0 45 0 12.951 8.616 6.822 7.8 0 45 0 13.172 9.034 7.322 8 0 45 0 13.003 9.100 7.487 8.2 0 45 0 12.576 8.929 7.422 8.4 0 45 0 11.989 8.604 7.205 8.6 0 45 0 11.309 8.183 6.892 8.8 0 45 0 10.586 7.710 6.522 9 0 45 0 9.851 7.213 6.123 9.2 0 45 0 9.127 6.712 5.715 9.4 0 45 0 8.429 6.222 5.310 9.6 0 45 0 7.766 5.750 4.918 9.8 0 45 0 7.142 5.302 4.543 10 0 45 0 6.560 4.881 4.189 10.2 0 45 0 6.020 4.489 3.857 10.4 0 45 0 5.522 4.125 3.549 10.6 0 45 0 5.063 3.788 3.263 10.8 0 45 0 4.643 3.479 2.999 11 0 45 0 4.257 3.194 2.756 11.2 0 45 0 3.905 2.933 2.532 11.4 0 45 0 3.583 2.694 2.328 11.6 0 45 0 3.289 2.476 2.140 11.8 0 45 0 3.021 2.276 1.969 12 0 45 0 2.776 2.093 1.811 12.2 0 45 0 2.553 1.926 1.668 12.4 0 45 0 2.349 1.774 1.536 12.6 0 45 0 2.163 1.634 1.416 12.8 0 45 0 1.993 1.507 1.306 13 0 45 0 1.838 1.390 1.206 13.2 0 45 0 1.696 1.284 1.114 13.4 0 45 0 1.567 1.186 1.029 13.6 0 45 0 1.448 1.097 0.952 13.8 0 45 0 1.339 1.015 0.881 14 0 45 0 1.240 0.940 0.816 3.4 0 90 0 18977.529 16872.085 15986.030 3.6 0 90 0 10214.445 8962.072 8434.642 3.8 0 90 0 5265.437 4559.201 4261.699 4 0 90 0 2551.138 2175.327 2017.030 4.2 0 90 0 1112.371 927.123 849.118 4.4 0 90 0 383.845 303.167 269.209 4.6 0 90 0 40.169 13.405 2.143 4.8 0 90 0 -101.990 -103.467 -104.093 5 0 90 0 -143.640 -135.250 -131.732 5.2 0 90 0 -138.976 -128.501 -124.109 5.4 0 90 0 -116.076 -107.041 -103.254 5.6 0 90 0 -88.748 -82.418 -79.764 5.8 0 90 0 -63.210 -59.728 -58.266 6 0 90 0 -41.791 -40.803 -40.382 6.2 0 90 0 -24.929 -25.915 -26.318 6.4 0 90 0 -12.233 -14.668 -15.675 6.6 0 90 0 -3.018 -6.444 -7.863 6.8 0 90 0 3.435 -0.609 -2.283 7 0 90 0 7.776 3.400 1.589 7.2 0 90 0 10.541 6.045 4.183 7.4 0 90 0 12.156 7.690 5.841 7.6 0 90 0 12.951 8.616 6.822 7.8 0 90 0 13.172 9.034 7.322 8 0 90 0 13.003 9.100 7.487 8.2 0 90 0 12.576 8.929 7.422 8.4 0 90 0 11.989 8.604 7.205 8.6 0 90 0 11.309 8.183 6.892 8.8 0 90 0 10.586 7.710 6.522 9 0 90 0 9.851 7.213 6.123 9.2 0 90 0 9.127 6.712 5.715 9.4 0 90 0 8.429 6.222 5.310 9.6 0 90 0 7.766 5.750 4.918 9.8 0 90 0 7.142 5.302 4.543 10 0 90 0 6.560 4.881 4.189 10.2 0 90 0 6.020 4.489 3.857 10.4 0 90 0 5.522 4.125 3.549 10.6 0 90 0 5.063 3.788 3.263 10.8 0 90 0 4.643 3.479 2.999 11 0 90 0 4.257 3.194 2.756 11.2 0 90 0 3.905 2.933 2.532 11.4 0 90 0 3.583 2.694 2.328 11.6 0 90 0 3.289 2.476 2.140 11.8 0 90 0 3.021 2.276 1.969 12 0 90 0 2.776 2.093 1.811 12.2 0 90 0 2.553 1.926 1.668 12.4 0 90 0 2.349 1.774 1.536 12.6 0 90 0 2.163 1.634 1.416 12.8 0 90 0 1.993 1.507 1.306 13 0 90 0 1.838 1.390 1.206 13.2 0 90 0 1.696 1.284 1.114 13.4 0 90 0 1.567 1.186 1.029 13.6 0 90 0 1.448 1.097 0.952 13.8 0 90 0 1.339 1.015 0.881 14 0 90 0 1.240 0.940 0.816 3.6 0 180 0 12358.691 12913.491 14231.093 3.8 0 180 0 5755.764 6074.569 6829.270 4 0 180 0 2538.961 2724.933 3166.099 4.2 0 180 0 1020.173 1124.466 1372.922 4.4 0 180 0 336.920 388.282 511.236 4.6 0 180 0 54.110 70.619 110.456 4.8 0 180 0 -44.240 -50.370 -64.756 5 0 180 0 -63.026 -83.281 -131.580 5.2 0 180 0 -51.582 -80.019 -147.967 5.4 0 180 0 -31.964 -64.495 -142.250 5.6 0 180 0 -13.176 -47.062 -128.029 5.8 0 180 0 1.780 -31.694 -111.623 6 0 180 0 12.485 -19.495 -95.796 6.2 0 180 0 19.494 -10.385 -81.611 6.4 0 180 0 23.619 -3.870 -69.339 6.6 0 180 0 25.635 0.619 -58.912 6.8 0 180 0 26.183 3.592 -50.129 7 0 180 0 25.754 5.462 -42.756 7.2 0 180 0 24.708 6.549 -36.572 7.4 0 180 0 23.300 7.090 -31.379 7.6 0 180 0 21.706 7.260 -27.008 7.8 0 180 0 20.046 7.181 -23.320 8 0 180 0 18.397 6.944 -20.198 8.2 0 180 0 16.806 6.609 -17.548 8.4 0 180 0 15.303 6.220 -15.290 8.6 0 180 0 13.903 5.807 -13.362 8.8 0 180 0 12.612 5.388 -11.709 9 0 180 0 11.429 4.978 -10.288 9.2 0 180 0 10.352 4.584 -9.062 9.4 0 180 0 9.374 4.211 -8.003 9.6 0 180 0 8.490 3.862 -7.085 9.8 0 180 0 7.691 3.537 -6.286 10 0 180 0 6.971 3.237 -5.590 10.2 0 180 0 6.322 2.962 -4.982 10.4 0 180 0 5.737 2.709 -4.449 10.6 0 180 0 5.211 2.478 -3.981 10.8 0 180 0 4.737 2.267 -3.570 11 0 180 0 4.310 2.075 -3.207 11.2 0 180 0 3.925 1.899 -2.886 11.4 0 180 0 3.578 1.740 -2.602 11.6 0 180 0 3.264 1.595 -2.349 11.8 0 180 0 2.982 1.463 -2.125 12 0 180 0 2.726 1.342 -1.926 12.2 0 180 0 2.495 1.233 -1.747 12.4 0 180 0 2.286 1.133 -1.588 12.6 0 180 0 2.096 1.042 -1.445 12.8 0 180 0 1.924 0.960 -1.317 13 0 180 0 1.768 0.884 -1.202 13.2 0 180 0 1.626 0.815 -1.099 13.4 0 180 0 1.497 0.752 -1.006 13.6 0 180 0 1.379 0.695 -0.921 13.8 0 180 0 1.272 0.642 -0.845 14 0 180 0 1.175 0.594 -0.776 3.4 45 45 0 13002.559 11539.581 10924.178 3.6 45 45 0 6940.445 6063.563 5694.372 3.8 45 45 0 3584.021 3074.832 2860.373 4 45 45 0 1775.822 1487.014 1365.373 4.2 45 45 0 831.666 670.249 602.273 4.4 45 45 0 358.173 268.022 230.064 4.6 45 45 0 134.228 82.659 60.944 4.8 45 45 0 38.162 6.763 -6.465 5 45 45 0 4.554 -16.691 -25.647 5.2 45 45 0 -0.808 -17.123 -24.005 5.4 45 45 0 4.848 -9.116 -15.007 5.6 45 45 0 13.324 0.537 -4.855 5.8 45 45 0 21.080 9.010 3.924 6 45 45 0 26.889 15.407 10.574 6.2 45 45 0 30.587 19.703 15.126 6.4 45 45 0 32.450 22.212 17.911 6.6 45 45 0 32.883 23.337 19.330 6.8 45 45 0 32.284 23.455 19.752 7 45 45 0 30.990 22.881 19.482 7.2 45 45 0 29.264 21.860 18.758 7.4 45 45 0 27.304 20.573 17.756 7.6 45 45 0 25.248 19.152 16.601 7.8 45 45 0 23.191 17.685 15.383 8 45 45 0 21.198 16.234 14.159 8.2 45 45 0 19.307 14.837 12.970 8.4 45 45 0 17.538 13.518 11.838 8.6 45 45 0 15.903 12.287 10.778 8.8 45 45 0 14.403 11.152 9.795 9 45 45 0 13.035 10.111 8.891 9.2 45 45 0 11.793 9.162 8.065 9.4 45 45 0 10.670 8.301 7.313 9.6 45 45 0 9.655 7.521 6.630 9.8 45 45 0 8.740 6.816 6.013 10 45 45 0 7.916 6.179 5.455 10.2 45 45 0 7.175 5.606 4.951 10.4 45 45 0 6.508 5.089 4.497 10.6 45 45 0 5.908 4.623 4.087 10.8 45 45 0 5.368 4.203 3.718 11 45 45 0 4.882 3.825 3.384 11.2 45 45 0 4.445 3.484 3.084 11.4 45 45 0 4.050 3.177 2.813 11.6 45 45 0 3.694 2.899 2.567 11.8 45 45 0 3.373 2.648 2.346 12 45 45 0 3.083 2.421 2.146 12.2 45 45 0 2.821 2.216 1.965 12.4 45 45 0 2.584 2.031 1.800 12.6 45 45 0 2.369 1.862 1.651 12.8 45 45 0 2.174 1.710 1.516 13 45 45 0 1.997 1.571 1.394 13.2 45 45 0 1.837 1.445 1.282 13.4 45 45 0 1.691 1.331 1.181 13.6 45 45 0 1.558 1.226 1.088 13.8 45 45 0 1.437 1.131 1.004 14 45 45 0 1.326 1.044 0.927 3.4 45 45 45 10679.643 9331.602 8764.113 3.6 45 45 45 5619.936 4812.331 4472.292 3.8 45 45 45 2810.456 2342.675 2145.717 4 45 45 45 1304.495 1040.515 929.377 4.2 45 45 45 530.706 384.423 322.843 4.4 45 45 45 156.034 75.403 41.460 4.6 45 45 45 -8.382 -53.680 -72.754 4.8 45 45 45 -66.913 -93.942 -105.329 5 45 45 45 -75.645 -93.661 -101.255 5.2 45 45 45 -63.693 -77.497 -83.315 5.4 45 45 45 -45.450 -57.381 -62.406 5.6 45 45 45 -27.492 -38.585 -43.252 5.8 45 45 45 -12.393 -23.027 -27.496 6 45 45 45 -0.785 -11.036 -15.338 6.2 45 45 45 7.560 -2.262 -6.380 6.4 45 45 45 13.187 3.868 -0.036 6.6 45 45 45 16.692 7.943 4.280 6.8 45 45 45 18.616 10.478 7.075 7 45 45 45 19.405 11.896 8.758 7.2 45 45 45 19.406 12.524 9.650 7.4 45 45 45 18.884 12.609 9.989 7.6 45 45 45 18.030 12.331 9.953 7.8 45 45 45 16.982 11.823 9.672 8 45 45 45 15.839 11.179 9.236 8.2 45 45 45 14.665 10.463 8.711 8.4 45 45 45 13.506 9.720 8.142 8.6 45 45 45 12.389 8.980 7.560 8.8 45 45 45 11.332 8.263 6.985 9 45 45 45 10.343 7.580 6.430 9.2 45 45 45 9.428 6.939 5.903 9.4 45 45 45 8.585 6.343 5.410 9.6 45 45 45 7.813 5.791 4.950 9.8 45 45 45 7.109 5.285 4.526 10 45 45 45 6.468 4.821 4.136 10.2 45 45 45 5.887 4.397 3.778 10.4 45 45 45 5.359 4.012 3.451 10.6 45 45 45 4.882 3.661 3.153 10.8 45 45 45 4.449 3.342 2.882 11 45 45 45 4.058 3.053 2.635 11.2 45 45 45 3.703 2.790 2.410 11.4 45 45 45 3.383 2.552 2.206 11.6 45 45 45 3.092 2.335 2.021 11.8 45 45 45 2.829 2.139 1.852 12 45 45 45 2.591 1.961 1.699 12.2 45 45 45 2.375 1.799 1.559 12.4 45 45 45 2.178 1.652 1.433 12.6 45 45 45 2.000 1.518 1.317 12.8 45 45 45 1.838 1.396 1.212 13 45 45 45 1.691 1.285 1.116 13.2 45 45 45 1.557 1.184 1.029 13.4 45 45 45 1.435 1.092 0.949 13.6 45 45 45 1.323 1.008 0.876 13.8 45 45 45 1.222 0.931 0.810 14 45 45 45 1.129 0.860 0.749 3.2 45 45 90 12579.669 10766.114 10002.865 3.4 45 45 90 6765.434 5615.482 5131.307 3.6 45 45 90 3347.091 2658.095 2367.974 3.8 45 45 90 1449.436 1053.707 887.100 4 45 45 90 457.997 238.492 146.105 4.2 45 45 90 -18.974 -137.311 -187.099 4.4 45 45 90 -217.313 -280.040 -306.424 4.6 45 45 90 -273.085 -306.678 -320.812 4.8 45 45 90 -261.822 -281.048 -289.146 5 45 45 90 -223.709 -236.428 -241.797 5.2 45 45 90 -178.958 -189.109 -193.405 5.4 45 45 90 -136.872 -146.256 -150.231 5.6 45 45 90 -101.036 -110.340 -114.281 5.8 45 45 90 -72.201 -81.574 -85.543 6 45 45 90 -49.840 -59.203 -63.166 6.2 45 45 90 -32.958 -42.160 -46.052 6.4 45 45 90 -20.481 -29.373 -33.130 6.6 45 45 90 -11.433 -19.895 -23.469 6.8 45 45 90 -4.993 -12.945 -16.301 7 45 45 90 -0.504 -7.899 -11.019 7.2 45 45 90 2.545 -4.276 -7.152 7.4 45 45 90 4.544 -1.707 -4.341 7.6 45 45 90 5.787 0.086 -2.316 7.8 45 45 90 6.489 1.310 -0.871 8 45 45 90 6.813 2.121 0.145 8.2 45 45 90 6.873 2.631 0.845 8.4 45 45 90 6.757 2.926 1.314 8.6 45 45 90 6.524 3.068 1.614 8.8 45 45 90 6.219 3.103 1.792 9 45 45 90 5.872 3.063 1.881 9.2 45 45 90 5.507 2.973 1.908 9.4 45 45 90 5.137 2.851 1.890 9.6 45 45 90 4.773 2.710 1.843 9.8 45 45 90 4.422 2.558 1.775 10 45 45 90 4.087 2.403 1.695 10.2 45 45 90 3.771 2.248 1.607 10.4 45 45 90 3.476 2.096 1.516 10.6 45 45 90 3.201 1.950 1.425 10.8 45 45 90 2.946 1.812 1.335 11 45 45 90 2.711 1.681 1.247 11.2 45 45 90 2.495 1.557 1.164 11.4 45 45 90 2.295 1.442 1.084 11.6 45 45 90 2.113 1.335 1.008 11.8 45 45 90 1.945 1.236 0.938 12 45 45 90 1.791 1.143 0.871 12.2 45 45 90 1.650 1.058 0.809 12.4 45 45 90 1.521 0.979 0.752 12.6 45 45 90 1.403 0.907 0.698 12.8 45 45 90 1.295 0.840 0.648 13 45 45 90 1.196 0.778 0.602 13.2 45 45 90 1.105 0.721 0.559 13.4 45 45 90 1.022 0.668 0.520 13.6 45 45 90 0.946 0.620 0.483 13.8 45 45 90 0.876 0.576 0.450 14 45 45 90 0.811 0.534 0.418 2.6 90 90 0 13384.562 11682.851 10966.970 2.8 90 90 0 6439.967 5379.846 4933.586 3 90 90 0 2915.200 2258.083 1981.412 3.2 90 90 0 1195.869 787.470 615.520 3.4 90 90 0 395.809 139.590 31.720 3.6 90 90 0 48.632 -114.612 -183.338 3.8 90 90 0 -83.692 -189.863 -234.567 4 90 90 0 -119.303 -190.074 -219.879 4.2 90 90 0 -115.044 -163.511 -183.929 4.4 90 90 0 -97.160 -131.287 -145.668 4.6 90 90 0 -77.017 -101.703 -112.107 4.8 90 90 0 -58.983 -77.291 -85.006 5 90 90 0 -44.295 -58.174 -64.022 5.2 90 90 0 -32.895 -43.621 -48.138 5.4 90 90 0 -24.283 -32.707 -36.252 5.6 90 90 0 -17.875 -24.581 -27.402 5.8 90 90 0 -13.146 -18.547 -20.817 6 90 90 0 -9.670 -14.063 -15.908 6.2 90 90 0 -7.117 -10.720 -12.233 6.4 90 90 0 -5.241 -8.219 -9.467 6.6 90 90 0 -3.861 -6.337 -7.375 6.8 90 90 0 -2.842 -4.914 -5.782 7 90 90 0 -2.088 -3.832 -4.561 7.2 90 90 0 -1.529 -3.003 -3.620 7.4 90 90 0 -1.113 -2.366 -2.889 7.6 90 90 0 -0.804 -1.872 -2.318 7.8 90 90 0 -0.573 -1.488 -1.870 8 90 90 0 -0.400 -1.188 -1.516 8.2 90 90 0 -0.272 -0.952 -1.235 8.4 90 90 0 -0.176 -0.765 -1.011 8.6 90 90 0 -0.105 -0.617 -0.830 8.8 90 90 0 -0.053 -0.499 -0.685 9 90 90 0 -0.015 -0.405 -0.568 9.2 90 90 0 0.013 -0.329 -0.472 9.4 90 90 0 0.033 -0.268 -0.394 9.6 90 90 0 0.047 -0.219 -0.329 9.8 90 90 0 0.056 -0.179 -0.277 10 90 90 0 0.062 -0.146 -0.233 10.2 90 90 0 0.065 -0.120 -0.197 10.4 90 90 0 0.067 -0.098 -0.167 10.6 90 90 0 0.067 -0.080 -0.142 10.8 90 90 0 0.066 -0.066 -0.121 11 90 90 0 0.064 -0.054 -0.103 11.2 90 90 0 0.062 -0.044 -0.088 11.4 90 90 0 0.059 -0.036 -0.075 11.6 90 90 0 0.057 -0.029 -0.065 11.8 90 90 0 0.054 -0.024 -0.056 12 90 90 0 0.051 -0.019 -0.048 12.2 90 90 0 0.048 -0.015 -0.042 12.4 90 90 0 0.046 -0.012 -0.036 12.6 90 90 0 0.043 -0.009 -0.031 12.8 90 90 0 0.040 -0.007 -0.027 13 90 90 0 0.038 -0.006 -0.024 13.2 90 90 0 0.036 -0.004 -0.020 13.4 90 90 0 0.033 -0.003 -0.018 13.6 90 90 0 0.031 -0.002 -0.016 13.8 90 90 0 0.029 -0.001 -0.014 14 90 90 0 0.027 0.000 -0.012 3 90 90 90 2078.882 1537.063 1308.889 3.2 90 90 90 680.598 340.229 196.914 3.4 90 90 90 54.323 -159.616 -249.680 3.6 90 90 90 -193.471 -328.648 -385.552 3.8 90 90 90 -264.628 -350.879 -387.192 4 90 90 90 -259.523 -315.334 -338.840 4.2 90 90 90 -226.238 -262.998 -278.488 4.4 90 90 90 -186.585 -211.301 -221.722 4.6 90 90 90 -149.565 -166.563 -173.731 4.8 90 90 90 -118.187 -130.151 -135.198 5 90 90 90 -92.825 -101.442 -105.076 5.2 90 90 90 -72.831 -79.174 -81.847 5.4 90 90 90 -57.269 -62.032 -64.037 5.6 90 90 90 -45.222 -48.863 -50.393 5.8 90 90 90 -35.904 -38.731 -39.917 6 90 90 90 -28.681 -30.907 -31.839 6.2 90 90 90 -23.061 -24.834 -25.575 6.4 90 90 90 -18.665 -20.092 -20.687 6.6 90 90 90 -15.205 -16.365 -16.847 6.8 90 90 90 -12.466 -13.416 -13.810 7 90 90 90 -10.284 -11.067 -11.392 7.2 90 90 90 -8.533 -9.184 -9.453 7.4 90 90 90 -7.120 -7.665 -7.889 7.6 90 90 90 -5.973 -6.431 -6.619 7.8 90 90 90 -5.036 -5.423 -5.581 8 90 90 90 -4.267 -4.595 -4.729 8.2 90 90 90 -3.632 -3.911 -4.026 8.4 90 90 90 -3.104 -3.344 -3.441 8.6 90 90 90 -2.664 -2.870 -2.954 8.8 90 90 90 -2.296 -2.473 -2.546 9 90 90 90 -1.985 -2.139 -2.202 9.2 90 90 90 -1.723 -1.857 -1.911 9.4 90 90 90 -1.501 -1.617 -1.665 9.6 90 90 90 -1.311 -1.413 -1.454 9.8 90 90 90 -1.149 -1.238 -1.275 10 90 90 90 -1.010 -1.089 -1.120 10.2 90 90 90 -0.890 -0.960 -0.988 10.4 90 90 90 -0.786 -0.848 -0.873 10.6 90 90 90 -0.697 -0.751 -0.773 10.8 90 90 90 -0.619 -0.667 -0.687 11 90 90 90 -0.551 -0.594 -0.612 11.2 90 90 90 -0.492 -0.530 -0.546 11.4 90 90 90 -0.440 -0.474 -0.488 11.6 90 90 90 -0.394 -0.425 -0.438 11.8 90 90 90 -0.354 -0.382 -0.393 12 90 90 90 -0.318 -0.343 -0.354 12.2 90 90 90 -0.287 -0.310 -0.319 12.4 90 90 90 -0.259 -0.280 -0.288 12.6 90 90 90 -0.234 -0.253 -0.260 12.8 90 90 90 -0.212 -0.229 -0.236 13 90 90 90 -0.193 -0.208 -0.214 13.2 90 90 90 -0.175 -0.189 -0.195 13.4 90 90 90 -0.160 -0.172 -0.177 13.6 90 90 90 -0.145 -0.157 -0.162 13.8 90 90 90 -0.133 -0.143 -0.148 14 90 90 90 -0.121 -0.131 -0.135 3.4 180 180 0 13364.493 11950.331 11355.262 3.6 180 180 0 5552.373 4846.914 4549.788 3.8 180 180 0 2149.141 1770.293 1610.717 4 180 180 0 717.043 496.746 403.982 4.2 180 180 0 149.637 11.802 -46.225 4.4 180 180 0 -49.568 -141.015 -179.516 4.6 180 180 0 -99.687 -162.982 -189.637 4.8 180 180 0 -94.973 -140.069 -159.065 5 180 180 0 -74.292 -107.062 -120.867 5.2 180 180 0 -52.484 -76.634 -86.806 5.4 180 180 0 -34.330 -52.321 -59.896 5.6 180 180 0 -20.657 -34.184 -39.874 5.8 180 180 0 -10.927 -21.181 -25.489 6 180 180 0 -4.272 -12.105 -15.392 6.2 180 180 0 0.123 -5.905 -8.431 6.4 180 180 0 2.915 -1.758 -3.712 6.6 180 180 0 4.595 0.948 -0.574 6.8 180 180 0 5.520 2.655 1.461 7 180 180 0 5.940 3.674 2.733 7.2 180 180 0 6.030 4.227 3.480 7.4 180 180 0 5.909 4.466 3.869 7.6 180 180 0 5.660 4.498 4.019 7.8 180 180 0 5.337 4.397 4.011 8 180 180 0 4.979 4.214 3.901 8.2 180 180 0 4.608 3.983 3.728 8.4 180 180 0 4.241 3.728 3.519 8.6 180 180 0 3.887 3.464 3.292 8.8 180 180 0 3.553 3.202 3.061 9 180 180 0 3.240 2.949 2.832 9.2 180 180 0 2.952 2.708 2.611 9.4 180 180 0 2.686 2.482 2.401 9.6 180 180 0 2.443 2.272 2.203 9.8 180 180 0 2.222 2.077 2.020 10 180 180 0 2.020 1.898 1.850 10.2 180 180 0 1.838 1.734 1.693 10.4 180 180 0 1.673 1.584 1.550 10.6 180 180 0 1.523 1.448 1.418 10.8 180 180 0 1.388 1.323 1.298 11 180 180 0 1.265 1.210 1.188 11.2 180 180 0 1.154 1.107 1.088 11.4 180 180 0 1.054 1.013 0.997 11.6 180 180 0 0.963 0.928 0.914 11.8 180 180 0 0.881 0.850 0.839 12 180 180 0 0.807 0.780 0.770 12.2 180 180 0 0.739 0.716 0.707 12.4 180 180 0 0.678 0.658 0.650 12.6 180 180 0 0.623 0.605 0.598 12.8 180 180 0 0.572 0.557 0.551 13 180 180 0 0.526 0.513 0.508 13.2 180 180 0 0.484 0.472 0.468 13.4 180 180 0 0.446 0.436 0.432 13.6 180 180 0 0.412 0.402 0.399 13.8 180 180 0 0.380 0.372 0.369 14 180 180 0 0.351 0.344 0.341 Bảng 3. Input sử dụng cho các phép tính toán lượng tử #T CCSD(T)/aug-cc-pVmZ MaxDisk=8192MW SCF=Tight Test A – A A – A #T CCSD(T)/aug-cc-pVmZ MaxDisk=8192MW nosymm SCF=Tight Test A – A A – ABq #T CCSD(T)/aug-cc-pVmZ MaxDisk=8192MW nosymm SCF=Tight Test A – ABq A – A

Các file đính kèm theo tài liệu này:

  • docxluan_an_tinh_toan_can_bang_long_hoi_cua_ar_n2_cl2_co_bang_ph.docx
  • docxDONG GOP MOI CUA LUAN AN TA_TV.docx
  • pdfNOI DUNG LUAN AN.pdf
  • docTOM TAT LUAN AN TIENG ANH.doc
  • docTOM TAT LUAN AN TIENG VIET.doc
Luận văn liên quan