- Xây dựng được cấu trúc đime cho các chất nghiên cứu (Ar, N2, Cl2 và CO).
- Tính toán được năng lượng bề mặt thế ab initio của 4 cấu hình đặc biệt cho các chất nghiên cứu.
Ưu điểm của phương pháp: xây dựng được cấu trúc tổng quát cho các kiểu phân tử khác nhau và tính toán năng lượng bề mặt thế ab initio cho 15 cấu hình không gian trong đó có 4 cấu hình đặc biệt L, H, T và X.
152 trang |
Chia sẻ: tueminh09 | Lượt xem: 584 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Tính toán cân bằng lỏng - Hơi của Ar, N2, Cl2, CO bằng phương pháp hóa lượng tử và mô phỏng toàn cục monte carlo, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nhung, Trần Dương, Phạm Văn Tất, Prediction of second virial coefficients of gases chlorine, nitrogen, carbon monoxide and argon using artificial neural network and virial equation of state, Tạp chí Hóa học, tập 52– số 5A, tr.208-214, ISSN 08667144 (2014).
Nguyễn Thành Được, Nguyễn Thị Ái Nhung, Trần Dương, Phạm Văn Tất, Ab initio Intermolecular Potentials and Calculation of Second Virial Coefficients for The Cl2-Cl2 dimer, Smart Science, Vol. 3, No. 4, pp.193-201, ISSN 2308-0477, DOI:10.6493/SmartScience (2015).
Nguyễn Thành Được, Nguyễn Thị Ái Nhung, Trần Dương, Phạm Nữ Ngọc Hân, Phạm Văn Tất, Vapor-liquid equilibria of binary system CO and Cl2 in mixture of greenhouse gases using quantum calculation., Tạp chí Hóa học, tập 54 – số 2, tr.145-152, DOI: 10.15625/0866-7144.2016-00250, (2016).
Nguyễn Thành Được, Trần Dương, Phạm Văn Tất, Tính toán hệ số virial bậc hai của các khí Cl2, N2, CO và Ar kết hợp phương trình trạng thái virial và mô hình đa biến, Tạp chí Khoa học và Công nghệ -Đại học Khoa học Huế, tập 13, số 2, tr.25-37, ISSN 2354-0842, (2018).
Nguyễn Thành Được, Trần Dương, Phạm Văn Tất, Tính toán hệ số virial và áp suất hơi của hệ CO – CO từ các tính toán lượng tử ab initio, Tạp chí Khoa học Đại học Huế: Khoa học Tự nhiên, tập 128, số 1A, tr.13-25, ISSN 1859-1388, DOI: 10.26459/hueuni-jns.v128i1A.5055, (2019).
TÀI LIỆU THAM KHẢO
[1]. Pham Van Tat (2009), “Prediction of vapor – liquid equilibria of binary mixtures using quantum calculations and activity coefficients models”, Tạp chí Hóa học, tập 47 số 5 trang 547 – 551.
[2]. Pham Van Tat, U.K. Deiters (2009), “Monte Carlo simulation of vapor – liquid equilibria of hydrogen using ab initio intermolecular potentials”, Tạp chí Hóa học, tập 47 số 5 trang 529 – 534.
[3]. Pham Van Tat, U.K. Deiters (2015), “Calculation of intermolecular potentials for H2-H2 and H2-O2 dimers ab initio and prediction of second virial coefficients”, Chemical Physics, Volume 457, 18 August 2015, p. 171-179.
[4]. A. Vetere (2005), “An improved method to predict second cross virial coefficients of pure compounds”, Fluid Phase Equilib., 204:15 – 20.
[5]. A. Stone (2004), “Intermolecular Forces”, Clarendon Press, Oxford.
[6]. A. D. Becke (1986)., J. Chem. Phys., 84, 4524.
[7]. A. D. Becke. (1986), “Density functional calculations of molecular bond energies”, J. Chem. Phys., 84, 4524.
[8]. A. E. Nasrabad, R. Laghaei, U. K. Deiters (2004), “Prediction of the thermophysical properties of pure neon, pure argon, and the binary mixtures neon-argon and argon-krypton by Monte Carlo simulation using ab initio potentials”, J. Chem. Phys. 121, 6423.
[9]. A. E. Nasrabad, R. Laghaei (2006), “Computational studies on thermodynamic properties, effective diameters, and free volume of argon using an ab initio potential”, J. Chem. Phys. 125, 084510.
[10]. A. I. Victorov, A. Fredenslund (1991), Fluid Phase Equilib, 66, 77 – 101.
[11]. A. K. Sum and S. I. Sandler (2002), “Ab initio pair potentials and phase equilibria predictions of halogenated compounds”, Fluid Phase Equilib., 199:5 – 13.
[12]. A. M. Michels, W. de Graaf and C. A. ten Seldam (1960), “Virial coefficients of hydrogen and deuterium at temperatures between -1750C and +1500C conclusion from the 2nd virial coefficients with regards to the intermolecular potential”, Physica, 26:393.
[13]. A. Z. Panagiotopoulos (1987), “Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble”, Mol. Phys., 61, 813-826.
[14]. A. Z. Panagiotopoulos, Computational Methodologies and Potentials for Phase Equilibria project homepage:
[15]. A.J. Stone (1996), “The theory of Intermolecular Forces”, Published in the United State by Oxford University Press Inc., New York.
[16]. Accelrys (2007), “MS Modeling Getting Started”, Release 4.0. Accelrys Software Inc.: San Diego, CA, January.
[17].Axel D.Becke (1988), “Density-functional exchange-energy approximation with correct asymptotic behavior”, Physical Review A 38 (6): 3098.
[18]. B. Delley (1990), “An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules”, J. Chem. Phys, 92: 508–517.
[19]. Chin-Teng Lin, C.S. George Lee (1996), “Neural fuzzy systems: a neurofuzzy synergism to intelligent systems”, Prentice-Hall Inc.
[20]. Christopher J Cramer (2004), “Essential of Computational Chemistry”, Theories and Models, 2nd edition, John Wiley & Sons.
[21]. D. Peng, D. B. Robinson, Ind. Eng (1976), Chem. Fundam. 15, 59.
[22]. D. E. Makarov and H. Metiu (1998), “Fitting potential – energy surfaces: A search in the function space by directed genetic programming”, J. Chem. Phys., 2:590 – 598.
[23]. D. E. Winterbone (1997), “Advanced Thermodynamics for Engineers”, John Wiley and Sons, New York.
[24]. D. R. Lide (2000), “Handbook of Chemistry and Physics”, CRC Press, Raton, 85th edition.
[25]. D. S. Wilson and L. L. Lee. (2005), “Chemical potentials and phase equilibria of Lennard-Jones mixtures: A self-consistent integral equation approach.”, J. Chem. Phys. 123, 044512.
[26]. D. S. H. Wong, S. I. Sandler (1992), AIChE J.38, 671.
[27]. David C.Young (2001), “Computational Chemistry – A Practical Guide for Applying Techniques to Real World Problems”, Wiley – Interscience, New York.
[28]. David C. Langreth, M J. Mehl (1983), “Beyond the local-density approximation in calculations of ground-state electronic properties”, Physical Review B 28 (4): 1809.
[29]. E. Mullins, R. Oldland, Y.A. Liu,; S. Wang, S. I. Sandler, C.C. Chen, M. Zwolak, K.C. Seavey (2006), “Sigma-Profile Database for Using COSMO-Based Thermodynamic Methods”, Ind. Eng. Chem. Res., 45.
[30]. E. Sapei, A. Zaytseva, P. Uusi – Kyyny, K. I. Keskinen, J. Aittamaa (2007), “Vapor Liquid Equilibrium for Binary Systems”, Fluid Phase Equilibria, 378 – 3812(07), 00334 – 2.
[31]. E. Blake Freedman (1982), “A Thermodynamic Code Based on Tiger: User’s Guide and Manual”, Technical Report ARBRL–TR–02411, Ballistic Research Laboratory, US Army Armament Research and Development Command, AD/A, 121–259.
[32]. F. C. William, F. R. Luiz, R. Gargano, and M. S. Geraldo (2005), “Fitting potential energy surface of reactive system via genetic algorithm”, Compt. Physics, eprint arXiv:physics/0511131, 1:1 – 10.
[33]. F. C. H. Wong, J. J. Gottlieb., and L.S. Lussier (2003), “Chemical Equilibrium Analysis of Combustion Products at Constant Volume”, Defence R & D Canada – Valcartier Technical Report DRDC Valcartier, tr. 2003-375.
[34]. Frank Jensen (2007), “Introduction to Computational Chemistry”, 2nd edition, John Wiley & Sons.
[35]. G.M. Wilson (1964), “Vapor-Liquid Equilibria. XI. A New Expression for the Excess Free Energy of Mixing”, J. Am. Chem. Soc., 86, 127-130.
[36]. H. Renon and J.M. Prausnitz (1968), “Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures”, AIChE J., 14, 135-144.
[37]. H. Hotelling (1933), “Analysis of a complex of statistical variables into principal components”, Journal of Educational Psychology, 24, 417–441, and 498–520.
[38]. H. P. William, S. A. Teukolsky, T. V. William, and B. P. Flannery (1992), “Numerical Recipes in C: The Art of Scientific Computing”, Cambridge, New York.
[39]. I. T. Jolliffe (2002), “Principal Component Analysis”, second edition, Springer-Verlag, ISBN 978-0-387-95442-4.
[40]. J. Stoll, J. Vrabec, H. Hasse (2003), “A set of molecular models for carbon monoxide and halogenated hydrocarbons”, J. Chem. Phys. 119, 11396.
[41]. J. Gmehling, U. Onken,W. Arlt (1982), “Vapour–Liquid Equilibrium Data Collection”, DECHEMA Chem. Data Ser., DECHEMA, Frankfurt.
[42]. J. Cioslowski (2001),“Quantum Mechanical Prediction of Thermochemical Data”, Kluwer Academic Publishers, New York.
[43]. J. Zupan., J. Gasteiger. (1992), “Neural networks in Chemistry and Drug Design”, Wiley-VCH.
[44]. J. Hertz, A. Krogh, and R.G. Palmer. (1991), “Introduction to the Theory of Neural Computation”, New York: Addison-Wesley.
[45]. J. B. Foresman and A. Frisch (1996), “Exploring Chemistry with Electronic Structure Methods”, Second Edition, Gaussian, Wallingford.
[46]. J. E. Lennard – Jones (1924), Proc. Royal. Soc., 106:463.
[47]. J. H. Dymond and E. B. Smith (1980), “The Virial Coefficients of Pure Gases and Mixtures”, Clarendon Press, Oxford.
[48]. J. P. Perdew, Y. Wang (1992)., Phys. Rev. B, 45, 13244.
[49]. J. P. Perdew, Y. Wang. (1992), “Accurate and simple analytic representation of the electron-gas correlation energy”, Phys. Rev. B, 45, 13244.
[50]. John P. Perdew, J A. Chevary, SH. Vosko, Koblar A. Jackson, Mark R. Pederson, D J . Singh, Carlos Fiolhais (1992), “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation”, Physical Review B 46 (11): 6671.
[51]. K. Leonhard and U. K. Deiters (2000), “Monte Carlo simulations of neon and argon using ab initio potential”, Mol. Phys., 98:1603 – 1616.
[52]. K. Leonhard and U. K. Deiters (2002), “Monte Carlo simulations of nitrogen using an ab initio potential, Mol. Phys., 100:2571 – 2585.
[53]. K. T. Tang and J. P. Toennies (1984), J. Chem. Phys., 80, 3726-3741.
[54]. K. T. Tang and J. P. Toennies (1984), “An improved simple model for the van der waals potential based on universal damping functions for the dispersion coefficients”, J. Chem. Phys., 80:3726 – 3741.
[55]. K.P. Huber, G. Herzberg (1979), “Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules”, Van Nostrand Reinhold Co.
[56]. Klamt (1998), “A. COSMO and COSMO-RS”, In Encyclopedia of Computational Chemistry; Schleyer, P. v. R., Ed.; Chichester.
[57]. M. Head Gordon (1996), “Quantum chemistry and molecular processes”, J. Phys. Chem., 100:13213–13225.
[58]. M. Abbaspour, E. K. Goharshadi (2006), “Determination of potential energy functions of CO–CO, CO2–CO2, and N2O–N2O and calculation of their transport properties”, Chemical Physics 330, 313–325.
[59]. M. G. Martin and J. I. Siepmann (1998), “Calculating Gibbs free energies of transfer from Gibbs ensemble Monte Carlo simulations”, Theor. Chem. Acc., 99:347 – 350.
[60]. M. H. Karimi-Jafari, Mitra Ashouria and Azadeh Yeganeh-Jabri (2009), “Coping with the anisotropy in the analytical representation of an ab initio potential energy surface for the Cl2 dimer”, Phys.Chem. Chem.Phys, 11, 5561–556.
[61]. M. L. Leininger, W. D. Allen, H. F. Schaefer, and C. D. Sherrill (2000), “Is Møller – Plesset perturbation theory a convergent ab initio method?”, J. Chem. Phys, 112:9213 – 922.
[62]. M. P. Allen, D. J. Tildesley (1991), “Computer Simulation of Liquids”, Clarendon Press Oxford.
[63]. Michael Greenacre (1983), “Theory and Applications of Correspondence Analysis”, London: Academic Press, ISBN 978-0-12-299050-2.
[64]. N. R. Draper and H. Smith (1998), “Applied Regression Analysis”, Wiley-Interscience.
[65]. P. Sun Yong and J. Shin Lee (2002), “Basis set limit binding energies of dimers derived from basis set convergence of monomer energies”, J. Chem. Phys., 116:5389 – 5394.
[66]. P. E. S. Wormer (2005), “Second virial coefficients of asymmetric top molecules”, J. Phys. Chem., 122:184301 – 184307.
[67]. P. M. Morse (1929), “Diatomic molecules according to the wave mechanics”, Phys. Rev., 34:57 – 64.
[68]. P. S. Y. Cheung and J. G. Powles (1975), “Properties of liquid – nitrogen. 4. Computer – simulation”, Mol. Phys., 30:921 – 949.
[69]. R. Xiong, S. I. Sandler, and R. I. Burnett (2014), “An Improvement to COSMO-SAC for Predicting Thermodynamic Properties”, Ind. Eng. Chem. Res., 53, 8265–8278.
[70]. R. Stryjek; J. H. Vera (1986), “PRSV: An improved Peng–Robinson equation of state for pure compounds and mixtures”, The Canadian Journal of Chemical Engineering, 64 (2): 323–333.
[71]. R. A. Kendall, T. H. Dunning, Jr., R. J. Harrison (1992), J. Chem. Phys., 96 6796-6806.
[72]. R. J. Sadus (2002), “Molecular Simulation of Fluids, Theory, algorithms and Object-Orientation”, Elservier, New York.
[73]. R. T. Pack (1983), J. Chem. Phys., 78, 7217-7222.
[74]. R. T. Pack (1983), “First quantum correction to second virial coefficients for anisotropic interactions: simple, corrected formula”, J. Chem. Phys., 78:7217 – 7222.
[75]. R.D. McCarty (1989), “Correlations for the Thermophysical Properties of Carbon Monoxide”, National Institute of Standards and Technology, Boulder, CO.
[76]. Gaussian03TM (2003), Revision B.02. Gaussian Inc, Wallingford, CT, USA.
[77]. S. Gordon and B.J. McBride (1971), “Computer Program for Computation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations”, National Aeronautics and Space Administration (NASA), NASA-SP-273.
[78]. S. F. Boys and F. Bernardi (1970), Mol. Phys., 19, 553 – 566.
[79]. S. J. Vosko, L. Wilk, M. Nusair (1980), “A critical analysis”, Can. J. Phys., 58, 1200-1211.
[80]. S. L. Garrison and S. I. Sandler (2002), “On the use of ab initio interaction energies for the accurate calculation of thermodynamic properties”, J. Chem. Phys.,117:10571 – 10580.
[81]. S.T. Lin (2000), Quantum Mechanical Approaches to the Prediction of Phase Equilibria: Solvation Thermodynamics and Group Contribution Methods, Ph.D. Dissertation, University of Delaware, Newark, DE.
[82]. S.T. Lin, S.I. Sandler (2002), “A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model”, Ind. Eng. Chem. Res., 41, 899.
[83]. T. Korona, H. L. Williams, R. Bukowski, B. Jeziorski, and K. Szalewicz (1997), “Helium dimer potential from symmetry – adapted perturbation theory calculations using large gaussian geminal and orbital basis sets”, J. Chem. Phys., 106:5109 – 5122.
[84]. T. Helgaker, P. Jorgensen, and J. Olsen (2000), “Molecular Electronic – Structure Theory”, John Wiley and Sons, New York.
[85]. T. Spyriouni, I. G. Economou, and D. N. Theodorou (1998), “Molecular simulation of the pure n – hexadecane vapor – liquid equilibria at elevated temperature”, Macromolecules, 31:1430 – 1431.
[86]. T. H. Dunning Jr (1970), “Gaussian basis function for use in molecular calculations. I. Contraction of atomic basis sets for the first – row atom”, J. Chem. Phys., 53:2823.
[87]. U. K. Deiters (1981), “A new semiempirical equation of state for fluids”, Chem. Eng. Sci., 36, 1139.
[88]. W. Hardle (1990), Applied Nonparametric Regression, ISBN 0-521-42950-1.
[89]. W. Squire (1970), “Integration for Engineers and Scientists”, Elsevier, New York.
[90]. W. F. Wang (2003), “Atomic potential parameters for H2 and D2: quantum corrections in the calculation of second virial coefficients”, J. Quanti. Spectr. And Radia. Tran., 76:23 – 30.
[91]. W. F. Wang (2003), J. Quant. Spectrosc. Radiat. Transfer, 76, 23-30.
[92]. National Institute of Standards and Technology (NIST),
[93]. U. K. Deiters, ThermoC project homepage:
PHỤ LỤC
Bảng 1. Các giá trị năng lượng ab initio cho tương tác N2-N2
r/Å
Tọa độ góc
Năng lượng ab initio
a
b
f
E-pVDZ
E-pVTZ
E-pV23Z
3.6
0
0
0
12539.103
11145.087
10536.324
3.8
0
0
0
5781.667
5084.046
4833.366
4
0
0
0
2548.622
2195.579
2138.254
4.2
0
0
0
1035.626
854.876
852.161
4.4
0
0
0
351.778
258.320
241.887
4.6
0
0
0
60.550
12.024
-39.016
4.8
0
0
0
-49.751
-74.734
-158.314
5
0
0
0
-80.297
-92.716
-198.792
5.2
0
0
0
-78.402
-84.008
-201.814
5.4
0
0
0
-65.456
-67.329
-188.145
5.6
0
0
0
-50.583
-50.411
-168.145
5.8
0
0
0
-37.259
-35.990
-146.872
6
0
0
0
-26.471
-24.648
-126.664
6.2
0
0
0
-18.189
-16.125
-108.481
6.4
0
0
0
-12.031
-9.910
-92.592
6.6
0
0
0
-7.554
-5.480
-78.937
6.8
0
0
0
-4.353
-2.383
-67.314
7
0
0
0
-2.100
-0.264
-57.472
7.2
0
0
0
-0.541
1.150
-49.159
7.4
0
0
0
0.516
2.060
-42.143
7.6
0
0
0
1.213
2.615
-36.220
7.8
0
0
0
1.653
2.920
-31.212
8
0
0
0
1.911
3.054
-26.970
8.2
0
0
0
2.042
3.070
-23.370
8.4
0
0
0
2.084
3.009
-20.307
8.6
0
0
0
2.066
2.897
-17.694
8.8
0
0
0
2.009
2.756
-15.460
9
0
0
0
1.926
2.597
-13.543
9.2
0
0
0
1.827
2.431
-11.895
9.4
0
0
0
1.721
2.265
-10.474
9.6
0
0
0
1.612
2.101
-9.246
9.8
0
0
0
1.504
1.944
-8.181
10
0
0
0
1.398
1.796
-7.255
10.2
0
0
0
1.296
1.655
-6.449
10.4
0
0
0
1.200
1.525
-5.745
10.6
0
0
0
1.109
1.403
-5.128
10.8
0
0
0
1.024
1.291
-4.588
11
0
0
0
0.945
1.187
-4.112
11.2
0
0
0
0.872
1.092
-3.692
11.4
0
0
0
0.804
1.004
-3.322
11.6
0
0
0
0.742
0.924
-2.994
11.8
0
0
0
0.684
0.850
-2.703
12
0
0
0
0.631
0.783
-2.445
3.6
45
0
0
4365.278
3558.331
3211.420
3.8
45
0
0
1744.932
1297.687
1090.264
4
45
0
0
571.181
275.283
175.659
4.2
45
0
0
79.451
-143.779
-197.774
4.4
45
0
0
-100.720
-280.396
-327.749
4.6
45
0
0
-145.654
-293.225
-350.228
4.8
45
0
0
-137.137
-258.332
-327.960
5
45
0
0
-111.623
-210.507
-289.832
5.2
45
0
0
-84.284
-164.400
-248.833
5.4
45
0
0
-60.613
-125.183
-210.454
5.6
45
0
0
-41.926
-93.814
-176.665
5.8
45
0
0
-27.903
-69.568
-147.835
6
45
0
0
-17.712
-51.204
-123.644
6.2
45
0
0
-10.475
-37.466
-103.525
6.4
45
0
0
-5.434
-27.264
-86.863
6.6
45
0
0
-1.989
-19.722
-73.084
6.8
45
0
0
0.315
-14.161
-61.683
7
45
0
0
1.810
-10.067
-52.236
7.2
45
0
0
2.739
-7.057
-44.389
7.4
45
0
0
3.275
-4.847
-37.853
7.6
45
0
0
3.542
-3.227
-32.392
7.8
45
0
0
3.627
-2.043
-27.814
8
45
0
0
3.591
-1.182
-23.964
8.2
45
0
0
3.476
-0.559
-20.714
8.4
45
0
0
3.315
-0.114
-17.963
8.6
45
0
0
3.126
0.201
-15.624
8.8
45
0
0
2.924
0.419
-13.631
9
45
0
0
2.720
0.565
-11.927
9.2
45
0
0
2.518
0.658
-10.464
9.4
45
0
0
2.325
0.713
-9.206
9.6
45
0
0
2.140
0.740
-8.120
9.8
45
0
0
1.967
0.746
-7.180
10
45
0
0
1.806
0.738
-6.364
10.2
45
0
0
1.657
0.719
-5.654
10.4
45
0
0
1.519
0.694
-5.034
10.6
45
0
0
1.393
0.665
-4.492
10.8
45
0
0
1.277
0.632
-4.017
11
45
0
0
1.170
0.599
-3.599
11.2
45
0
0
1.073
0.565
-3.231
11.4
45
0
0
0.985
0.532
-2.907
11.6
45
0
0
0.904
0.499
-2.619
11.8
45
0
0
0.830
0.468
-2.364
12
45
0
0
0.762
0.438
-2.138
3.2
90
0
0
7765.237
6374.009
5845.719
3.4
90
0
0
3285.140
2450.091
1971.607
3.6
90
0
0
1164.843
652.732
416.915
3.8
90
0
0
230.450
-107.015
-179.500
4
90
0
0
-132.011
-378.103
-376.332
4.2
90
0
0
-233.722
-431.377
-409.249
4.4
90
0
0
-227.055
-396.819
-379.145
4.6
90
0
0
-183.332
-334.336
-329.128
4.8
90
0
0
-133.710
-269.750
-277.082
5
90
0
0
-90.158
-212.811
-229.822
5.2
90
0
0
-55.954
-166.047
-189.354
5.4
90
0
0
-30.784
-129.011
-155.687
5.6
90
0
0
-13.106
-100.234
-128.083
5.8
90
0
0
-1.186
-78.087
-105.605
6
90
0
0
6.509
-61.101
-87.347
6.2
90
0
0
11.203
-48.071
-72.514
6.4
90
0
0
13.821
-38.048
-60.442
6.6
90
0
0
15.036
-30.307
-50.590
6.8
90
0
0
15.326
-24.296
-42.522
7
90
0
0
15.028
-19.601
-35.890
7.2
90
0
0
14.371
-15.912
-30.416
7.4
90
0
0
13.512
-12.996
-25.881
7.6
90
0
0
12.556
-10.675
-22.107
7.8
90
0
0
11.570
-8.818
-18.955
8
90
0
0
10.598
-7.323
-16.311
8.2
90
0
0
9.666
-6.113
-14.084
8.4
90
0
0
8.789
-5.127
-12.203
8.6
90
0
0
7.975
-4.320
-10.606
8.8
90
0
0
7.227
-3.656
-9.248
9
90
0
0
6.543
-3.108
-8.087
9.2
90
0
0
5.922
-2.652
-7.092
9.4
90
0
0
5.359
-2.272
-6.237
9.6
90
0
0
4.850
-1.953
-5.499
9.8
90
0
0
4.391
-1.686
-4.861
10
90
0
0
3.978
-1.459
-4.308
10.2
90
0
0
3.606
-1.268
-3.826
10.4
90
0
0
3.271
-1.105
-3.406
10.6
90
0
0
2.970
-0.965
-3.039
10.8
90
0
0
2.699
-0.846
-2.717
11
90
0
0
2.455
-0.744
-2.434
11.2
90
0
0
2.235
-0.655
-2.185
11.4
90
0
0
2.037
-0.579
-1.965
11.6
90
0
0
1.858
-0.513
-1.771
11.8
90
0
0
1.696
-0.455
-1.598
12
90
0
0
1.551
-0.405
-1.445
3.4
45
45
0
5502.547
4694.777
4395.000
3.6
45
45
0
2260.608
1895.727
1732.834
3.8
45
45
0
798.620
620.402
574.112
4
45
45
0
171.218
75.588
77.155
4.2
45
45
0
-73.865
-129.469
-123.656
4.4
45
45
0
-150.165
-183.849
-191.714
4.6
45
45
0
-156.629
-176.839
-201.505
4.8
45
45
0
-137.801
-149.085
-187.319
5
45
45
0
-112.807
-117.997
-164.877
5.2
45
45
0
-89.157
-90.207
-141.203
5.4
45
45
0
-69.253
-67.568
-119.227
5.6
45
45
0
-53.383
-49.980
-99.970
5.8
45
45
0
-41.070
-36.675
-83.586
6
45
45
0
-31.643
-26.761
-69.865
6.2
45
45
0
-24.466
-19.439
-58.470
6.4
45
45
0
-19.007
-14.057
-49.042
6.6
45
45
0
-14.846
-10.111
-41.250
6.8
45
45
0
-11.663
-7.221
-34.808
7
45
45
0
-9.215
-5.105
-29.471
7.2
45
45
0
-7.323
-3.556
-25.041
7.4
45
45
0
-5.853
-2.424
-21.351
7.6
45
45
0
-4.703
-1.597
-18.269
7.8
45
45
0
-3.798
-0.995
-15.686
8
45
45
0
-3.083
-0.558
-13.514
8.2
45
45
0
-2.515
-0.244
-11.680
8.4
45
45
0
-2.060
-0.020
-10.128
8.6
45
45
0
-1.695
0.137
-8.810
8.8
45
45
0
-1.401
0.245
-7.686
9
45
45
0
-1.162
0.317
-6.724
9.2
45
45
0
-0.967
0.362
-5.900
9.4
45
45
0
-0.808
0.387
-5.190
9.6
45
45
0
-0.677
0.398
-4.578
9.8
45
45
0
-0.570
0.400
-4.048
10
45
45
0
-0.481
0.394
-3.588
10.2
45
45
0
-0.407
0.383
-3.187
10.4
45
45
0
-0.345
0.368
-2.838
10.6
45
45
0
-0.294
0.352
-2.533
10.8
45
45
0
-0.251
0.334
-2.265
11
45
45
0
-0.214
0.316
-2.029
11.2
45
45
0
-0.184
0.298
-1.822
11.4
45
45
0
-0.158
0.280
-1.638
11.6
45
45
0
-0.136
0.263
-1.476
11.8
45
45
0
-0.117
0.246
-1.333
12
45
45
0
-0.101
0.230
-1.205
2.8
90
90
0
5963.928
5186.633
4938.626
3
90
90
0
2414.176
1976.161
1592.432
3.2
90
90
0
792.165
525.548
370.346
3.4
90
90
0
96.858
-73.426
-61.166
3.6
90
90
0
-167.328
-278.743
-193.026
3.8
90
90
0
-240.168
-313.627
-212.801
4
90
90
0
-234.620
-282.901
-193.652
4.2
90
90
0
-201.990
-233.375
-164.068
4.4
90
90
0
-164.270
-184.299
-134.705
4.6
90
90
0
-129.921
-142.348
-109.071
4.8
90
90
0
-101.426
-108.803
-87.861
5
90
90
0
-78.818
-82.877
-70.744
5.2
90
90
0
-61.278
-63.189
-57.086
5.4
90
90
0
-47.811
-48.357
-46.235
5.6
90
90
0
-37.505
-37.210
-37.615
5.8
90
90
0
-29.610
-28.819
-30.754
6
90
90
0
-23.541
-22.479
-25.273
6.2
90
90
0
-18.850
-17.662
-20.876
6.4
90
90
0
-15.201
-13.980
-17.332
6.6
90
90
0
-12.344
-11.147
-14.462
6.8
90
90
0
-10.091
-8.950
-12.125
7
90
90
0
-8.303
-7.235
-10.213
7.2
90
90
0
-6.873
-5.887
-8.641
7.4
90
90
0
-5.722
-4.819
-7.343
7.6
90
90
0
-4.790
-3.969
-6.265
7.8
90
90
0
-4.031
-3.287
-5.367
8
90
90
0
-3.409
-2.737
-4.615
8.2
90
90
0
-2.896
-2.291
-3.982
8.4
90
90
0
-2.471
-1.926
-3.448
8.6
90
90
0
-2.118
-1.628
-2.996
8.8
90
90
0
-1.822
-1.381
-2.611
9
90
90
0
-1.573
-1.177
-2.283
9.2
90
90
0
-1.364
-1.007
-2.001
9.4
90
90
0
-1.186
-0.865
-1.759
9.6
90
90
0
-1.035
-0.745
-1.551
9.8
90
90
0
-0.906
-0.645
-1.371
10
90
90
0
-0.795
-0.560
-1.215
10.2
90
90
0
-0.700
-0.487
-1.079
10.4
90
90
0
-0.618
-0.425
-0.960
10.6
90
90
0
-0.547
-0.373
-0.857
10.8
90
90
0
-0.485
-0.327
-0.766
11
90
90
0
-0.432
-0.288
-0.686
11.2
90
90
0
-0.385
-0.255
-0.616
11.4
90
90
0
-0.344
-0.225
-0.554
11.6
90
90
0
-0.308
-0.200
-0.499
11.8
90
90
0
-0.276
-0.178
-0.450
12
90
90
0
-0.248
-0.159
-0.407
3.4
45
45
45
4652.272
3715.368
3717.804
3.6
45
45
45
1873.661
1388.879
1373.669
3.8
45
45
45
603.749
346.650
373.897
4
45
45
45
59.203
-80.674
-39.812
4.2
45
45
45
-146.631
-224.546
-195.064
4.4
45
45
45
-201.406
-245.591
-237.131
4.6
45
45
45
-194.107
-219.363
-231.501
4.8
45
45
45
-165.487
-179.808
-207.820
5
45
45
45
-133.161
-141.012
-179.325
5.2
45
45
45
-103.948
-107.905
-151.667
5.4
45
45
45
-79.841
-81.435
-126.989
5.6
45
45
45
-60.830
-60.997
-105.850
5.8
45
45
45
-46.199
-45.521
-88.122
6
45
45
45
-35.082
-33.927
-73.421
6.2
45
45
45
-26.688
-25.288
-61.295
6.4
45
45
45
-20.363
-18.863
-51.315
6.6
45
45
45
-15.592
-14.084
-43.098
6.8
45
45
45
-11.986
-10.524
-36.325
7
45
45
45
-9.250
-7.866
-30.727
7.2
45
45
45
-7.166
-5.876
-26.087
7.4
45
45
45
-5.572
-4.383
-22.230
7.6
45
45
45
-4.347
-3.259
-19.011
7.8
45
45
45
-3.401
-2.411
-16.316
8
45
45
45
-2.668
-1.770
-14.052
8.2
45
45
45
-2.097
-1.285
-12.142
8.4
45
45
45
-1.651
-0.918
-10.526
8.6
45
45
45
-1.301
-0.640
-9.154
8.8
45
45
45
-1.026
-0.430
-7.984
9
45
45
45
-0.808
-0.271
-6.985
9.2
45
45
45
-0.636
-0.152
-6.127
9.4
45
45
45
-0.500
-0.063
-5.390
9.6
45
45
45
-0.392
0.002
-4.753
9.8
45
45
45
-0.305
0.050
-4.203
10
45
45
45
-0.236
0.085
-3.725
10.2
45
45
45
-0.182
0.109
-3.309
10.4
45
45
45
-0.138
0.125
-2.946
10.6
45
45
45
-0.103
0.136
-2.629
10.8
45
45
45
-0.075
0.141
-2.351
11
45
45
45
-0.053
0.144
-2.106
11.2
45
45
45
-0.035
0.143
-1.891
11.4
45
45
45
-0.021
0.141
-1.701
11.6
45
45
45
-0.010
0.138
-1.532
11.8
45
45
45
-0.002
0.133
-1.383
12
45
45
45
0.005
0.128
-1.251
2.8
90
90
90
5041.144
4306.347
4079.585
3
90
90
90
1960.021
1556.921
1180.538
3.2
90
90
90
583.633
317.223
156.993
3.4
90
90
90
16.745
-185.854
-179.746
3.6
90
90
90
-181.958
-346.991
-263.225
3.8
90
90
90
-223.249
-360.525
-256.720
4
90
90
90
-204.265
-318.428
-222.465
4.2
90
90
90
-167.625
-261.938
-183.744
4.4
90
90
90
-130.571
-207.954
-148.601
4.6
90
90
90
-99.000
-162.180
-119.163
4.8
90
90
90
-74.045
-125.494
-95.365
5
90
90
90
-55.056
-96.933
-76.434
5.2
90
90
90
-40.894
-75.022
-61.473
5.4
90
90
90
-30.436
-58.320
-49.666
5.6
90
90
90
-22.741
-45.602
-40.332
5.8
90
90
90
-17.079
-35.897
-32.929
6
90
90
90
-12.900
-28.459
-27.031
6.2
90
90
90
-9.803
-22.726
-22.309
6.4
90
90
90
-7.495
-18.279
-18.510
6.6
90
90
90
-5.765
-14.806
-15.436
6.8
90
90
90
-4.460
-12.073
-12.936
7
90
90
90
-3.470
-9.910
-10.892
7.2
90
90
90
-2.714
-8.184
-9.213
7.4
90
90
90
-2.133
-6.798
-7.827
7.6
90
90
90
-1.684
-5.679
-6.677
7.8
90
90
90
-1.336
-4.769
-5.719
8
90
90
90
-1.063
-4.025
-4.917
8.2
90
90
90
-0.850
-3.413
-4.242
8.4
90
90
90
-0.681
-2.907
-3.673
8.6
90
90
90
-0.548
-2.486
-3.191
8.8
90
90
90
-0.442
-2.135
-2.781
9
90
90
90
-0.357
-1.841
-2.431
9.2
90
90
90
-0.289
-1.593
-2.131
9.4
90
90
90
-0.234
-1.384
-1.874
9.6
90
90
90
-0.190
-1.205
-1.652
9.8
90
90
90
-0.155
-1.054
-1.460
10
90
90
90
-0.126
-0.924
-1.293
10.2
90
90
90
-0.102
-0.812
-1.149
10.4
90
90
90
-0.083
-0.716
-1.022
10.6
90
90
90
-0.068
-0.633
-0.912
10.8
90
90
90
-0.055
-0.561
-0.815
11
90
90
90
-0.044
-0.499
-0.730
11.2
90
90
90
-0.036
-0.444
-0.656
11.4
90
90
90
-0.029
-0.396
-0.590
11.6
90
90
90
-0.023
-0.355
-0.531
11.8
90
90
90
-0.018
-0.318
-0.479
12
90
90
90
-0.014
-0.285
-0.433
Bảng 2. Các giá trị năng lượng ab initio cho tương tác CO-CO
r/Å
Tọa độ góc
Năng lượng ab initio
a
b
f
E-pVDZ
E-pVTZ
E-pV23Z
3.6
0
0
0
30922.854
28522.526
27512.396
3.8
0
0
0
16903.904
15449.208
14836.597
4
0
0
0
9110.992
8253.564
7892.438
4.2
0
0
0
4836.918
4343.121
4135.190
4.4
0
0
0
2528.035
2248.949
2131.461
4.6
0
0
0
1303.207
1147.327
1081.710
4.8
0
0
0
668.103
580.883
544.152
5
0
0
0
348.439
298.268
277.113
5.2
0
0
0
193.880
162.967
149.908
5.4
0
0
0
123.226
101.892
92.864
5.6
0
0
0
93.425
76.624
69.513
5.8
0
0
0
82.216
67.474
61.243
6
0
0
0
78.495
64.711
58.897
6.2
0
0
0
77.025
63.791
58.223
6.4
0
0
0
75.563
62.799
57.442
6.6
0
0
0
73.336
61.092
55.965
6.8
0
0
0
70.242
58.603
53.738
7
0
0
0
66.446
55.486
50.913
7.2
0
0
0
62.188
51.956
47.693
7.4
0
0
0
57.696
48.216
44.271
7.6
0
0
0
53.158
44.427
40.799
7.8
0
0
0
48.712
40.711
37.390
8
0
0
0
44.453
37.149
34.120
8.2
0
0
0
40.440
33.792
31.037
8.4
0
0
0
36.705
30.668
28.168
8.6
0
0
0
33.262
27.789
25.523
8.8
0
0
0
30.111
25.153
23.101
9
0
0
0
27.241
22.753
20.897
9.2
0
0
0
24.638
20.577
18.898
9.4
0
0
0
22.285
18.610
17.091
9.6
0
0
0
20.161
16.835
15.461
9.8
0
0
0
18.248
15.236
13.992
10
0
0
0
16.525
13.797
12.670
10.2
0
0
0
14.976
12.502
11.481
10.4
0
0
0
13.582
11.338
10.412
10.6
0
0
0
12.328
10.291
9.450
10.8
0
0
0
11.201
9.349
8.585
11
0
0
0
10.186
8.501
7.806
11.2
0
0
0
9.272
7.738
7.106
11.4
0
0
0
8.448
7.050
6.474
11.6
0
0
0
7.705
6.430
5.905
11.8
0
0
0
7.035
5.871
5.391
12
0
0
0
6.430
5.366
4.927
12.2
0
0
0
5.883
4.909
4.508
12.4
0
0
0
5.388
4.496
4.128
12.6
0
0
0
4.939
4.121
3.784
12.8
0
0
0
4.533
3.782
3.473
13
0
0
0
4.164
3.474
3.190
13.2
0
0
0
3.829
3.195
2.933
13.4
0
0
0
3.524
2.941
2.700
13.6
0
0
0
3.247
2.709
2.488
13.8
0
0
0
2.995
2.498
2.294
14
0
0
0
2.764
2.306
2.117
3.6
0
45
0
10214.445
8962.072
8434.642
3.8
0
45
0
5265.437
4559.201
4261.699
4
0
45
0
2551.138
2175.327
2017.030
4.2
0
45
0
1112.371
927.123
849.118
4.4
0
45
0
383.845
303.167
269.209
4.6
0
45
0
40.169
13.405
2.143
4.8
0
45
0
-101.990
-103.467
-104.093
5
0
45
0
-143.640
-135.250
-131.732
5.2
0
45
0
-138.976
-128.501
-124.109
5.4
0
45
0
-116.076
-107.041
-103.254
5.6
0
45
0
-88.748
-82.418
-79.764
5.8
0
45
0
-63.210
-59.728
-58.266
6
0
45
0
-41.791
-40.803
-40.382
6.2
0
45
0
-24.929
-25.915
-26.318
6.4
0
45
0
-12.233
-14.668
-15.675
6.6
0
45
0
-3.018
-6.444
-7.863
6.8
0
45
0
3.435
-0.609
-2.283
7
0
45
0
7.776
3.400
1.589
7.2
0
45
0
10.541
6.045
4.183
7.4
0
45
0
12.156
7.690
5.841
7.6
0
45
0
12.951
8.616
6.822
7.8
0
45
0
13.172
9.034
7.322
8
0
45
0
13.003
9.100
7.487
8.2
0
45
0
12.576
8.929
7.422
8.4
0
45
0
11.989
8.604
7.205
8.6
0
45
0
11.309
8.183
6.892
8.8
0
45
0
10.586
7.710
6.522
9
0
45
0
9.851
7.213
6.123
9.2
0
45
0
9.127
6.712
5.715
9.4
0
45
0
8.429
6.222
5.310
9.6
0
45
0
7.766
5.750
4.918
9.8
0
45
0
7.142
5.302
4.543
10
0
45
0
6.560
4.881
4.189
10.2
0
45
0
6.020
4.489
3.857
10.4
0
45
0
5.522
4.125
3.549
10.6
0
45
0
5.063
3.788
3.263
10.8
0
45
0
4.643
3.479
2.999
11
0
45
0
4.257
3.194
2.756
11.2
0
45
0
3.905
2.933
2.532
11.4
0
45
0
3.583
2.694
2.328
11.6
0
45
0
3.289
2.476
2.140
11.8
0
45
0
3.021
2.276
1.969
12
0
45
0
2.776
2.093
1.811
12.2
0
45
0
2.553
1.926
1.668
12.4
0
45
0
2.349
1.774
1.536
12.6
0
45
0
2.163
1.634
1.416
12.8
0
45
0
1.993
1.507
1.306
13
0
45
0
1.838
1.390
1.206
13.2
0
45
0
1.696
1.284
1.114
13.4
0
45
0
1.567
1.186
1.029
13.6
0
45
0
1.448
1.097
0.952
13.8
0
45
0
1.339
1.015
0.881
14
0
45
0
1.240
0.940
0.816
3.4
0
90
0
18977.529
16872.085
15986.030
3.6
0
90
0
10214.445
8962.072
8434.642
3.8
0
90
0
5265.437
4559.201
4261.699
4
0
90
0
2551.138
2175.327
2017.030
4.2
0
90
0
1112.371
927.123
849.118
4.4
0
90
0
383.845
303.167
269.209
4.6
0
90
0
40.169
13.405
2.143
4.8
0
90
0
-101.990
-103.467
-104.093
5
0
90
0
-143.640
-135.250
-131.732
5.2
0
90
0
-138.976
-128.501
-124.109
5.4
0
90
0
-116.076
-107.041
-103.254
5.6
0
90
0
-88.748
-82.418
-79.764
5.8
0
90
0
-63.210
-59.728
-58.266
6
0
90
0
-41.791
-40.803
-40.382
6.2
0
90
0
-24.929
-25.915
-26.318
6.4
0
90
0
-12.233
-14.668
-15.675
6.6
0
90
0
-3.018
-6.444
-7.863
6.8
0
90
0
3.435
-0.609
-2.283
7
0
90
0
7.776
3.400
1.589
7.2
0
90
0
10.541
6.045
4.183
7.4
0
90
0
12.156
7.690
5.841
7.6
0
90
0
12.951
8.616
6.822
7.8
0
90
0
13.172
9.034
7.322
8
0
90
0
13.003
9.100
7.487
8.2
0
90
0
12.576
8.929
7.422
8.4
0
90
0
11.989
8.604
7.205
8.6
0
90
0
11.309
8.183
6.892
8.8
0
90
0
10.586
7.710
6.522
9
0
90
0
9.851
7.213
6.123
9.2
0
90
0
9.127
6.712
5.715
9.4
0
90
0
8.429
6.222
5.310
9.6
0
90
0
7.766
5.750
4.918
9.8
0
90
0
7.142
5.302
4.543
10
0
90
0
6.560
4.881
4.189
10.2
0
90
0
6.020
4.489
3.857
10.4
0
90
0
5.522
4.125
3.549
10.6
0
90
0
5.063
3.788
3.263
10.8
0
90
0
4.643
3.479
2.999
11
0
90
0
4.257
3.194
2.756
11.2
0
90
0
3.905
2.933
2.532
11.4
0
90
0
3.583
2.694
2.328
11.6
0
90
0
3.289
2.476
2.140
11.8
0
90
0
3.021
2.276
1.969
12
0
90
0
2.776
2.093
1.811
12.2
0
90
0
2.553
1.926
1.668
12.4
0
90
0
2.349
1.774
1.536
12.6
0
90
0
2.163
1.634
1.416
12.8
0
90
0
1.993
1.507
1.306
13
0
90
0
1.838
1.390
1.206
13.2
0
90
0
1.696
1.284
1.114
13.4
0
90
0
1.567
1.186
1.029
13.6
0
90
0
1.448
1.097
0.952
13.8
0
90
0
1.339
1.015
0.881
14
0
90
0
1.240
0.940
0.816
3.6
0
180
0
12358.691
12913.491
14231.093
3.8
0
180
0
5755.764
6074.569
6829.270
4
0
180
0
2538.961
2724.933
3166.099
4.2
0
180
0
1020.173
1124.466
1372.922
4.4
0
180
0
336.920
388.282
511.236
4.6
0
180
0
54.110
70.619
110.456
4.8
0
180
0
-44.240
-50.370
-64.756
5
0
180
0
-63.026
-83.281
-131.580
5.2
0
180
0
-51.582
-80.019
-147.967
5.4
0
180
0
-31.964
-64.495
-142.250
5.6
0
180
0
-13.176
-47.062
-128.029
5.8
0
180
0
1.780
-31.694
-111.623
6
0
180
0
12.485
-19.495
-95.796
6.2
0
180
0
19.494
-10.385
-81.611
6.4
0
180
0
23.619
-3.870
-69.339
6.6
0
180
0
25.635
0.619
-58.912
6.8
0
180
0
26.183
3.592
-50.129
7
0
180
0
25.754
5.462
-42.756
7.2
0
180
0
24.708
6.549
-36.572
7.4
0
180
0
23.300
7.090
-31.379
7.6
0
180
0
21.706
7.260
-27.008
7.8
0
180
0
20.046
7.181
-23.320
8
0
180
0
18.397
6.944
-20.198
8.2
0
180
0
16.806
6.609
-17.548
8.4
0
180
0
15.303
6.220
-15.290
8.6
0
180
0
13.903
5.807
-13.362
8.8
0
180
0
12.612
5.388
-11.709
9
0
180
0
11.429
4.978
-10.288
9.2
0
180
0
10.352
4.584
-9.062
9.4
0
180
0
9.374
4.211
-8.003
9.6
0
180
0
8.490
3.862
-7.085
9.8
0
180
0
7.691
3.537
-6.286
10
0
180
0
6.971
3.237
-5.590
10.2
0
180
0
6.322
2.962
-4.982
10.4
0
180
0
5.737
2.709
-4.449
10.6
0
180
0
5.211
2.478
-3.981
10.8
0
180
0
4.737
2.267
-3.570
11
0
180
0
4.310
2.075
-3.207
11.2
0
180
0
3.925
1.899
-2.886
11.4
0
180
0
3.578
1.740
-2.602
11.6
0
180
0
3.264
1.595
-2.349
11.8
0
180
0
2.982
1.463
-2.125
12
0
180
0
2.726
1.342
-1.926
12.2
0
180
0
2.495
1.233
-1.747
12.4
0
180
0
2.286
1.133
-1.588
12.6
0
180
0
2.096
1.042
-1.445
12.8
0
180
0
1.924
0.960
-1.317
13
0
180
0
1.768
0.884
-1.202
13.2
0
180
0
1.626
0.815
-1.099
13.4
0
180
0
1.497
0.752
-1.006
13.6
0
180
0
1.379
0.695
-0.921
13.8
0
180
0
1.272
0.642
-0.845
14
0
180
0
1.175
0.594
-0.776
3.4
45
45
0
13002.559
11539.581
10924.178
3.6
45
45
0
6940.445
6063.563
5694.372
3.8
45
45
0
3584.021
3074.832
2860.373
4
45
45
0
1775.822
1487.014
1365.373
4.2
45
45
0
831.666
670.249
602.273
4.4
45
45
0
358.173
268.022
230.064
4.6
45
45
0
134.228
82.659
60.944
4.8
45
45
0
38.162
6.763
-6.465
5
45
45
0
4.554
-16.691
-25.647
5.2
45
45
0
-0.808
-17.123
-24.005
5.4
45
45
0
4.848
-9.116
-15.007
5.6
45
45
0
13.324
0.537
-4.855
5.8
45
45
0
21.080
9.010
3.924
6
45
45
0
26.889
15.407
10.574
6.2
45
45
0
30.587
19.703
15.126
6.4
45
45
0
32.450
22.212
17.911
6.6
45
45
0
32.883
23.337
19.330
6.8
45
45
0
32.284
23.455
19.752
7
45
45
0
30.990
22.881
19.482
7.2
45
45
0
29.264
21.860
18.758
7.4
45
45
0
27.304
20.573
17.756
7.6
45
45
0
25.248
19.152
16.601
7.8
45
45
0
23.191
17.685
15.383
8
45
45
0
21.198
16.234
14.159
8.2
45
45
0
19.307
14.837
12.970
8.4
45
45
0
17.538
13.518
11.838
8.6
45
45
0
15.903
12.287
10.778
8.8
45
45
0
14.403
11.152
9.795
9
45
45
0
13.035
10.111
8.891
9.2
45
45
0
11.793
9.162
8.065
9.4
45
45
0
10.670
8.301
7.313
9.6
45
45
0
9.655
7.521
6.630
9.8
45
45
0
8.740
6.816
6.013
10
45
45
0
7.916
6.179
5.455
10.2
45
45
0
7.175
5.606
4.951
10.4
45
45
0
6.508
5.089
4.497
10.6
45
45
0
5.908
4.623
4.087
10.8
45
45
0
5.368
4.203
3.718
11
45
45
0
4.882
3.825
3.384
11.2
45
45
0
4.445
3.484
3.084
11.4
45
45
0
4.050
3.177
2.813
11.6
45
45
0
3.694
2.899
2.567
11.8
45
45
0
3.373
2.648
2.346
12
45
45
0
3.083
2.421
2.146
12.2
45
45
0
2.821
2.216
1.965
12.4
45
45
0
2.584
2.031
1.800
12.6
45
45
0
2.369
1.862
1.651
12.8
45
45
0
2.174
1.710
1.516
13
45
45
0
1.997
1.571
1.394
13.2
45
45
0
1.837
1.445
1.282
13.4
45
45
0
1.691
1.331
1.181
13.6
45
45
0
1.558
1.226
1.088
13.8
45
45
0
1.437
1.131
1.004
14
45
45
0
1.326
1.044
0.927
3.4
45
45
45
10679.643
9331.602
8764.113
3.6
45
45
45
5619.936
4812.331
4472.292
3.8
45
45
45
2810.456
2342.675
2145.717
4
45
45
45
1304.495
1040.515
929.377
4.2
45
45
45
530.706
384.423
322.843
4.4
45
45
45
156.034
75.403
41.460
4.6
45
45
45
-8.382
-53.680
-72.754
4.8
45
45
45
-66.913
-93.942
-105.329
5
45
45
45
-75.645
-93.661
-101.255
5.2
45
45
45
-63.693
-77.497
-83.315
5.4
45
45
45
-45.450
-57.381
-62.406
5.6
45
45
45
-27.492
-38.585
-43.252
5.8
45
45
45
-12.393
-23.027
-27.496
6
45
45
45
-0.785
-11.036
-15.338
6.2
45
45
45
7.560
-2.262
-6.380
6.4
45
45
45
13.187
3.868
-0.036
6.6
45
45
45
16.692
7.943
4.280
6.8
45
45
45
18.616
10.478
7.075
7
45
45
45
19.405
11.896
8.758
7.2
45
45
45
19.406
12.524
9.650
7.4
45
45
45
18.884
12.609
9.989
7.6
45
45
45
18.030
12.331
9.953
7.8
45
45
45
16.982
11.823
9.672
8
45
45
45
15.839
11.179
9.236
8.2
45
45
45
14.665
10.463
8.711
8.4
45
45
45
13.506
9.720
8.142
8.6
45
45
45
12.389
8.980
7.560
8.8
45
45
45
11.332
8.263
6.985
9
45
45
45
10.343
7.580
6.430
9.2
45
45
45
9.428
6.939
5.903
9.4
45
45
45
8.585
6.343
5.410
9.6
45
45
45
7.813
5.791
4.950
9.8
45
45
45
7.109
5.285
4.526
10
45
45
45
6.468
4.821
4.136
10.2
45
45
45
5.887
4.397
3.778
10.4
45
45
45
5.359
4.012
3.451
10.6
45
45
45
4.882
3.661
3.153
10.8
45
45
45
4.449
3.342
2.882
11
45
45
45
4.058
3.053
2.635
11.2
45
45
45
3.703
2.790
2.410
11.4
45
45
45
3.383
2.552
2.206
11.6
45
45
45
3.092
2.335
2.021
11.8
45
45
45
2.829
2.139
1.852
12
45
45
45
2.591
1.961
1.699
12.2
45
45
45
2.375
1.799
1.559
12.4
45
45
45
2.178
1.652
1.433
12.6
45
45
45
2.000
1.518
1.317
12.8
45
45
45
1.838
1.396
1.212
13
45
45
45
1.691
1.285
1.116
13.2
45
45
45
1.557
1.184
1.029
13.4
45
45
45
1.435
1.092
0.949
13.6
45
45
45
1.323
1.008
0.876
13.8
45
45
45
1.222
0.931
0.810
14
45
45
45
1.129
0.860
0.749
3.2
45
45
90
12579.669
10766.114
10002.865
3.4
45
45
90
6765.434
5615.482
5131.307
3.6
45
45
90
3347.091
2658.095
2367.974
3.8
45
45
90
1449.436
1053.707
887.100
4
45
45
90
457.997
238.492
146.105
4.2
45
45
90
-18.974
-137.311
-187.099
4.4
45
45
90
-217.313
-280.040
-306.424
4.6
45
45
90
-273.085
-306.678
-320.812
4.8
45
45
90
-261.822
-281.048
-289.146
5
45
45
90
-223.709
-236.428
-241.797
5.2
45
45
90
-178.958
-189.109
-193.405
5.4
45
45
90
-136.872
-146.256
-150.231
5.6
45
45
90
-101.036
-110.340
-114.281
5.8
45
45
90
-72.201
-81.574
-85.543
6
45
45
90
-49.840
-59.203
-63.166
6.2
45
45
90
-32.958
-42.160
-46.052
6.4
45
45
90
-20.481
-29.373
-33.130
6.6
45
45
90
-11.433
-19.895
-23.469
6.8
45
45
90
-4.993
-12.945
-16.301
7
45
45
90
-0.504
-7.899
-11.019
7.2
45
45
90
2.545
-4.276
-7.152
7.4
45
45
90
4.544
-1.707
-4.341
7.6
45
45
90
5.787
0.086
-2.316
7.8
45
45
90
6.489
1.310
-0.871
8
45
45
90
6.813
2.121
0.145
8.2
45
45
90
6.873
2.631
0.845
8.4
45
45
90
6.757
2.926
1.314
8.6
45
45
90
6.524
3.068
1.614
8.8
45
45
90
6.219
3.103
1.792
9
45
45
90
5.872
3.063
1.881
9.2
45
45
90
5.507
2.973
1.908
9.4
45
45
90
5.137
2.851
1.890
9.6
45
45
90
4.773
2.710
1.843
9.8
45
45
90
4.422
2.558
1.775
10
45
45
90
4.087
2.403
1.695
10.2
45
45
90
3.771
2.248
1.607
10.4
45
45
90
3.476
2.096
1.516
10.6
45
45
90
3.201
1.950
1.425
10.8
45
45
90
2.946
1.812
1.335
11
45
45
90
2.711
1.681
1.247
11.2
45
45
90
2.495
1.557
1.164
11.4
45
45
90
2.295
1.442
1.084
11.6
45
45
90
2.113
1.335
1.008
11.8
45
45
90
1.945
1.236
0.938
12
45
45
90
1.791
1.143
0.871
12.2
45
45
90
1.650
1.058
0.809
12.4
45
45
90
1.521
0.979
0.752
12.6
45
45
90
1.403
0.907
0.698
12.8
45
45
90
1.295
0.840
0.648
13
45
45
90
1.196
0.778
0.602
13.2
45
45
90
1.105
0.721
0.559
13.4
45
45
90
1.022
0.668
0.520
13.6
45
45
90
0.946
0.620
0.483
13.8
45
45
90
0.876
0.576
0.450
14
45
45
90
0.811
0.534
0.418
2.6
90
90
0
13384.562
11682.851
10966.970
2.8
90
90
0
6439.967
5379.846
4933.586
3
90
90
0
2915.200
2258.083
1981.412
3.2
90
90
0
1195.869
787.470
615.520
3.4
90
90
0
395.809
139.590
31.720
3.6
90
90
0
48.632
-114.612
-183.338
3.8
90
90
0
-83.692
-189.863
-234.567
4
90
90
0
-119.303
-190.074
-219.879
4.2
90
90
0
-115.044
-163.511
-183.929
4.4
90
90
0
-97.160
-131.287
-145.668
4.6
90
90
0
-77.017
-101.703
-112.107
4.8
90
90
0
-58.983
-77.291
-85.006
5
90
90
0
-44.295
-58.174
-64.022
5.2
90
90
0
-32.895
-43.621
-48.138
5.4
90
90
0
-24.283
-32.707
-36.252
5.6
90
90
0
-17.875
-24.581
-27.402
5.8
90
90
0
-13.146
-18.547
-20.817
6
90
90
0
-9.670
-14.063
-15.908
6.2
90
90
0
-7.117
-10.720
-12.233
6.4
90
90
0
-5.241
-8.219
-9.467
6.6
90
90
0
-3.861
-6.337
-7.375
6.8
90
90
0
-2.842
-4.914
-5.782
7
90
90
0
-2.088
-3.832
-4.561
7.2
90
90
0
-1.529
-3.003
-3.620
7.4
90
90
0
-1.113
-2.366
-2.889
7.6
90
90
0
-0.804
-1.872
-2.318
7.8
90
90
0
-0.573
-1.488
-1.870
8
90
90
0
-0.400
-1.188
-1.516
8.2
90
90
0
-0.272
-0.952
-1.235
8.4
90
90
0
-0.176
-0.765
-1.011
8.6
90
90
0
-0.105
-0.617
-0.830
8.8
90
90
0
-0.053
-0.499
-0.685
9
90
90
0
-0.015
-0.405
-0.568
9.2
90
90
0
0.013
-0.329
-0.472
9.4
90
90
0
0.033
-0.268
-0.394
9.6
90
90
0
0.047
-0.219
-0.329
9.8
90
90
0
0.056
-0.179
-0.277
10
90
90
0
0.062
-0.146
-0.233
10.2
90
90
0
0.065
-0.120
-0.197
10.4
90
90
0
0.067
-0.098
-0.167
10.6
90
90
0
0.067
-0.080
-0.142
10.8
90
90
0
0.066
-0.066
-0.121
11
90
90
0
0.064
-0.054
-0.103
11.2
90
90
0
0.062
-0.044
-0.088
11.4
90
90
0
0.059
-0.036
-0.075
11.6
90
90
0
0.057
-0.029
-0.065
11.8
90
90
0
0.054
-0.024
-0.056
12
90
90
0
0.051
-0.019
-0.048
12.2
90
90
0
0.048
-0.015
-0.042
12.4
90
90
0
0.046
-0.012
-0.036
12.6
90
90
0
0.043
-0.009
-0.031
12.8
90
90
0
0.040
-0.007
-0.027
13
90
90
0
0.038
-0.006
-0.024
13.2
90
90
0
0.036
-0.004
-0.020
13.4
90
90
0
0.033
-0.003
-0.018
13.6
90
90
0
0.031
-0.002
-0.016
13.8
90
90
0
0.029
-0.001
-0.014
14
90
90
0
0.027
0.000
-0.012
3
90
90
90
2078.882
1537.063
1308.889
3.2
90
90
90
680.598
340.229
196.914
3.4
90
90
90
54.323
-159.616
-249.680
3.6
90
90
90
-193.471
-328.648
-385.552
3.8
90
90
90
-264.628
-350.879
-387.192
4
90
90
90
-259.523
-315.334
-338.840
4.2
90
90
90
-226.238
-262.998
-278.488
4.4
90
90
90
-186.585
-211.301
-221.722
4.6
90
90
90
-149.565
-166.563
-173.731
4.8
90
90
90
-118.187
-130.151
-135.198
5
90
90
90
-92.825
-101.442
-105.076
5.2
90
90
90
-72.831
-79.174
-81.847
5.4
90
90
90
-57.269
-62.032
-64.037
5.6
90
90
90
-45.222
-48.863
-50.393
5.8
90
90
90
-35.904
-38.731
-39.917
6
90
90
90
-28.681
-30.907
-31.839
6.2
90
90
90
-23.061
-24.834
-25.575
6.4
90
90
90
-18.665
-20.092
-20.687
6.6
90
90
90
-15.205
-16.365
-16.847
6.8
90
90
90
-12.466
-13.416
-13.810
7
90
90
90
-10.284
-11.067
-11.392
7.2
90
90
90
-8.533
-9.184
-9.453
7.4
90
90
90
-7.120
-7.665
-7.889
7.6
90
90
90
-5.973
-6.431
-6.619
7.8
90
90
90
-5.036
-5.423
-5.581
8
90
90
90
-4.267
-4.595
-4.729
8.2
90
90
90
-3.632
-3.911
-4.026
8.4
90
90
90
-3.104
-3.344
-3.441
8.6
90
90
90
-2.664
-2.870
-2.954
8.8
90
90
90
-2.296
-2.473
-2.546
9
90
90
90
-1.985
-2.139
-2.202
9.2
90
90
90
-1.723
-1.857
-1.911
9.4
90
90
90
-1.501
-1.617
-1.665
9.6
90
90
90
-1.311
-1.413
-1.454
9.8
90
90
90
-1.149
-1.238
-1.275
10
90
90
90
-1.010
-1.089
-1.120
10.2
90
90
90
-0.890
-0.960
-0.988
10.4
90
90
90
-0.786
-0.848
-0.873
10.6
90
90
90
-0.697
-0.751
-0.773
10.8
90
90
90
-0.619
-0.667
-0.687
11
90
90
90
-0.551
-0.594
-0.612
11.2
90
90
90
-0.492
-0.530
-0.546
11.4
90
90
90
-0.440
-0.474
-0.488
11.6
90
90
90
-0.394
-0.425
-0.438
11.8
90
90
90
-0.354
-0.382
-0.393
12
90
90
90
-0.318
-0.343
-0.354
12.2
90
90
90
-0.287
-0.310
-0.319
12.4
90
90
90
-0.259
-0.280
-0.288
12.6
90
90
90
-0.234
-0.253
-0.260
12.8
90
90
90
-0.212
-0.229
-0.236
13
90
90
90
-0.193
-0.208
-0.214
13.2
90
90
90
-0.175
-0.189
-0.195
13.4
90
90
90
-0.160
-0.172
-0.177
13.6
90
90
90
-0.145
-0.157
-0.162
13.8
90
90
90
-0.133
-0.143
-0.148
14
90
90
90
-0.121
-0.131
-0.135
3.4
180
180
0
13364.493
11950.331
11355.262
3.6
180
180
0
5552.373
4846.914
4549.788
3.8
180
180
0
2149.141
1770.293
1610.717
4
180
180
0
717.043
496.746
403.982
4.2
180
180
0
149.637
11.802
-46.225
4.4
180
180
0
-49.568
-141.015
-179.516
4.6
180
180
0
-99.687
-162.982
-189.637
4.8
180
180
0
-94.973
-140.069
-159.065
5
180
180
0
-74.292
-107.062
-120.867
5.2
180
180
0
-52.484
-76.634
-86.806
5.4
180
180
0
-34.330
-52.321
-59.896
5.6
180
180
0
-20.657
-34.184
-39.874
5.8
180
180
0
-10.927
-21.181
-25.489
6
180
180
0
-4.272
-12.105
-15.392
6.2
180
180
0
0.123
-5.905
-8.431
6.4
180
180
0
2.915
-1.758
-3.712
6.6
180
180
0
4.595
0.948
-0.574
6.8
180
180
0
5.520
2.655
1.461
7
180
180
0
5.940
3.674
2.733
7.2
180
180
0
6.030
4.227
3.480
7.4
180
180
0
5.909
4.466
3.869
7.6
180
180
0
5.660
4.498
4.019
7.8
180
180
0
5.337
4.397
4.011
8
180
180
0
4.979
4.214
3.901
8.2
180
180
0
4.608
3.983
3.728
8.4
180
180
0
4.241
3.728
3.519
8.6
180
180
0
3.887
3.464
3.292
8.8
180
180
0
3.553
3.202
3.061
9
180
180
0
3.240
2.949
2.832
9.2
180
180
0
2.952
2.708
2.611
9.4
180
180
0
2.686
2.482
2.401
9.6
180
180
0
2.443
2.272
2.203
9.8
180
180
0
2.222
2.077
2.020
10
180
180
0
2.020
1.898
1.850
10.2
180
180
0
1.838
1.734
1.693
10.4
180
180
0
1.673
1.584
1.550
10.6
180
180
0
1.523
1.448
1.418
10.8
180
180
0
1.388
1.323
1.298
11
180
180
0
1.265
1.210
1.188
11.2
180
180
0
1.154
1.107
1.088
11.4
180
180
0
1.054
1.013
0.997
11.6
180
180
0
0.963
0.928
0.914
11.8
180
180
0
0.881
0.850
0.839
12
180
180
0
0.807
0.780
0.770
12.2
180
180
0
0.739
0.716
0.707
12.4
180
180
0
0.678
0.658
0.650
12.6
180
180
0
0.623
0.605
0.598
12.8
180
180
0
0.572
0.557
0.551
13
180
180
0
0.526
0.513
0.508
13.2
180
180
0
0.484
0.472
0.468
13.4
180
180
0
0.446
0.436
0.432
13.6
180
180
0
0.412
0.402
0.399
13.8
180
180
0
0.380
0.372
0.369
14
180
180
0
0.351
0.344
0.341
Bảng 3. Input sử dụng cho các phép tính toán lượng tử
#T CCSD(T)/aug-cc-pVmZ MaxDisk=8192MW SCF=Tight Test
A – A
A – A
#T CCSD(T)/aug-cc-pVmZ MaxDisk=8192MW nosymm SCF=Tight Test
A – A
A – ABq
#T CCSD(T)/aug-cc-pVmZ MaxDisk=8192MW nosymm SCF=Tight Test
A – ABq
A – A