Nghiên cứu khả năng khử màu thuốc nhuộm bằng phương pháp điện phân

MỤC LỤC CHƯƠNG I: TỔNG QUAN VỀ LÝ THUYẾT4 1.1. Tổng quan về thuốc nhuộm4 1.1.1. Khái niệm4 1.1.2. Cách gọi tên thuốc nhuộm4 1.1.3. Cấu tạo chung tạo nên màu sắc của thuốc nhuộm4 1.1.4. Bản chất màu sắc trong tự nhiên. 4 1.1.5. Lý thuyết về ánh sáng và sự hấp thụ ánh sáng của vật thể. 6 1.1.5.1. Đặc điểm của ánh sáng mặt trời6 1.1.5.2. Năng lượng của ánh sáng. 6 1.1.6. Phân loại thuốc nhuộm7 Dựa vào nguồn gốc chia làm 2 loại. 7 1.1.6.1. Theo cấu tạo hóa học. 7 1.1.6.2. Theo phân lớp kỹ thuật có8 1.1.6.3. Loại thuốc nhuộm nghiên cứu8 1.1.7. Phương pháp đo màu của máy quang phổ. 11 1.1.7.1. Cấu tạo11 1.1.7.2. Tiến hành đo màu. 11 1.2. Nước thải nghành dệt nhuộm12 1.2.1. Giới thiệu. 12 1.2.2. Tác nhân gây ô nhiễm12 1.2.2.1. Nhóm thứ nhất. 13 1.2.2.2. Nhóm chất thứ hai. 14 1.2.2.3. Nhóm thứ ba. 14 1.2.3. Các tiêu chuẩn kiểm soát nước thải ô nhiễm14 1.2.3.1. Các chỉ tiêu sinh thái. 14 1.2.3.2. Nhóm các chỉ tiêu khác. 15 1.2.4. Hệ thống các phương pháp xử lý nước thải17 1.2.4.1. Các phương pháp xử lý17 1.2.4.2. Dây chuyền xử lý nước thải. 17 1.3. Tổng quan về điện phân. 22 1.3.1. Điện phân. 22 1.3.2. Điện phân dung dịch NaCl dùng điện cực trơ titan. 24 1.3.2.1. Ở catot. 25 1.3.2.2. Ở Anot. 26 1.3.3. Định luật Faraday. 28 1.3.4. Ứng dụng của phương pháp điện hóa. 30 1.3.4.1. Quá trình điện hóa. 30 1.3.4.2. Quá trình oxy hóa điện hóa. 31 1.3.4.3. Các kết quả nghiên cứu ở cấp độ thử nghiệm . 31 CHƯƠNG II THỰC NGHIỆM . 32 Kế hoạch thực nghiệm32 2.1. Bước 1. 33 2.2. Bước 2. 35 2.3. Bước 3. 35 2.4. Bước 4. 35 2.5. Bước 5. 35

doc37 trang | Chia sẻ: lvcdongnoi | Lượt xem: 3098 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Nghiên cứu khả năng khử màu thuốc nhuộm bằng phương pháp điện phân, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
MỤC LỤC Sơ đồ bảng biểu và hình vẽ Bảng 1.1: Bảng màu sắc và bước sóng tương ứng. Hình 1.1: Công thức phân tử của thuốc nhuộm acid yellow 17. Hình 1.2: Công thức phân tử của thuốc nhuộm acid blue US1. Hình 1.3: Công thức phân tử của thuốc nhuộm acid red 52. Hình 2.1: Sơ đồ quy trình xử lý nước thải ở các xí nghiệp liên doanh Donatex, cty Dệt may 7 và cty 28. Hình 2.2: Sơ đồ quy trình xử lý nước thải ở công ty dệt Choongnam Vietnam Textile Co.Ltd (Nhơn Trạch, Đồng Nai). Hình 2.3: Quy trình phức hợp gồm nhiều công đoạn: xử lý trước, xử lý hoá lý, xử lý vy sinh hiếu khí, lọc than hoạt tính của công ty dệt Việt Thắng. CHƯƠNG I: TỔNG QUAN VỀ LÝ THUYẾT Tổng quan về thuốc nhuộm Khái niệm Thuốc nhuộm là tên gọi chung của những hợp chất hữu cơ mang màu (có nguồn gốc tự nhiên hay tổng hợp) rất đa dạng về màu sắc cũng như chủng loại, chúng có khả năng nhuộm màu nghĩa là có khả năng bắt màu hay gắn màu trực tiếp. Cách gọi tên thuốc nhuộm Gồm 3 phần: Phần thứ 1: viết cả chữ, chỉ tên phân lớp kỹ thuật của thuốc nhuộm. Phần thứ 2: viết cả chữ, thường là các tính từ chỉ màu sắc của thuốc nhuộm. Phần thứ 3: được viết bằng chữ và chữ số chỉ sắc thái và cường độ của thuốc nhuộm. Để chỉ cường độ màu người ta dùng 2 chữ cái đi liền với nhau như BB, RR …., hoặc thêm vào các chữ số như: 2R, 6B, 4G…. Cấu tạo chung tạo nên màu sắc của thuốc nhuộm Theo quan điểm của Butlervo và Alektsev năm 1876 O. Witt thì hợp chất hữu cơ mang màu là do trong phân tử của chúng có chứa những nhóm mang màu, đó là những nhóm nguyên tử chưa bão hòa hóa trị. Những nhóm mang màu quan trọng là: CH=CH nhóm etylen N=N nhóm azo CH=N nhóm azo metyl N=O nhóm nitrozo NO2 nhóm nitro = C =O nhóm cacbonyl Ngoài những nhóm mang màu thì để màu sắc sâu hơn thì cần có nhóm trợ màu: -OH, -NH2, -N (CH3)2 Bản chất màu sắc trong tự nhiên Màu sắc là một hiện tượng phụ thuộc chủ yếu vào các yếu tố sau đây: Cấu tạo vật thể mang màu. Thành phần của ánh sáng chiếu vào vật thể và góc quan sát. Tình trạng mắt người quan sát. Trong thực tế khi nghiên cứu về màu sắc thì có các khái niệm: Màu quang phổ: là màu nhận được khi phân tích ánh sáng trắng ra thành những tia màu hợp thành nhờ dụng cụ quang học, mỗi màu được đặc trưng bằng 1 bước sóng nhất định từ 380 đến 760nm và gọi là màu đơn sắc, đặc điểm của các màu này là tươi và thuần sắc. Màu vô sắc: là những màu được đặc trưng bởi cường độ màu như nhau tại tất cả các bước sóng. Màu hữu sắc: là những màu thiên nhiên thể hiện ở các vật xung quanh ta. Tông màu: là khái niệm trừu tượng thường được hiểu là sắc, sắc thái hoặc là ánh màu. Độ thuần sắc: là chỉ tiêu xác định mức độ sắc thái trong màu. Độ sáng: đồng nghĩa với độ phản chiếu, được đánh giá bằng phần trăm các tia tới so với tổng chùm tia phản xạ. Lý thuyết về ánh sáng và sự hấp thụ ánh sáng của vật thể Đặc điểm của ánh sáng mặt trời Ánh sáng mặt trời mà con người cảm nhận được là ánh sáng trắng, ánh sáng này được hợp thành từ bảy màu đơn sắc có bước sóng khác nhau: đỏ, vành, cam, lục, lam, chàm, tím. Giữa 7 màu này là vô số màu trung gian do sự phối ghép màu của 2 màu lân cận. Những màu chính được trình bày: Bảng 1.1: Bảng các màu chính và bước sóng tương ứng Tên màu Bước sóng Tên màu Bước sóng Cực tím Tím Tím lam Xanh lam Xanh da trời Xanh lục Vàng lục 400 420 440 470 500 530 560 Vàng Vàng cam Da cam Đỏ cam Đỏ Cực đỏ 580 590 600 610 650 780 Năng lượng của ánh sáng Theo thuyết proton thì ánh sáng là kết quả của hiện tượng bức xạ sóng được truyền đi kèm theo năng lượng của chúng được tính bằng kilocalo. Khi một vật bị chiếu sáng thì một số nguyên tử nào đó được cấp năng lượng và nó chuyển từ trạng thái ổn định sang trạng thái không ổn định. Hai trạng thái này cách nhau bởi một năng lượng nằm trong khoảng 35kcal đến 70kcal tính cho mỗi phân tử nhuộm. Trong quá trình nhảy từ mức năng lượng này sang mức năng lượng khác thì các nguyên tử sẽ hấp thụ năng lượng và phát ra tia sáng có bước sóng nhất định. Theo định luật lượng tử ta sẽ tính được mức năng lượng theo công thức: Trong đó: γ: tần số dao động h: hằng số planck h= 6,626.10-27erg/s C: tốc độ ánh sáng, C=300000km/s λ: bước sóng Phân loại thuốc nhuộm Dựa vào nguồn gốc chia làm 2 loại: Thuốc nhuộm có nguồn gốc tự nhiên và thuốc nhuộm tổng hợp. Thuốc nhuộm tự nhiên. Thuôc nhuộm tổng hợp: được chia theo phân lớp kỹ thuật và theo cấu tạo hóa học Theo cấu tạo hóa học Thuốc nhuộm azo. Thuốc nhuộm antraquinon. Thuốc nhuộm indigoit. Thuốc nhuộm arylmetan. Thuốc nhuộm nitro. Thuốc nhuộm nitrozo. Thuốc nhuộm polymetyn. Thuốc nhuộm lưu huỳnh. Thuốc nhuộm arylamin. Thuốc nhuộm azometyn. Thuốc nhuộm hoàn nguyên đa vòng Thuốc nhuộm phtaloxianin. Theo phân lớp kỹ thuật có Thuốc nhuộm trực tiếp. Thuốc nhuộm hoạt tính. Thuốc nhuộm Bazo-cation. Thuốc nhuộm Cầm màu. Thuốc nhuộm Hoàn nguyên tan và không tan. Thuốc nhuộm Lưu huỳnh. Thuốc nhuộm Azo không tan. Thuốc nhuộm Phân tán. Thuốc nhuộm Oxy hóa. Thuốc nhuộm Pigment. Thuốc nhuộm acid. Loại thuốc nhuộm nghiên cứu Thuốc nhuộm acid là các loại thuốc nhuộm có đặc điểm chung là hòa tan trong nước, có phạm vi sử dụng rộng, ngoài mục đích nhuộm len, tơ tằm và xơ, polyamit một số dùng để nhuộm da, lông thú. Lớp thuốc nhuộm này được gọi là “acid” vì chúng bắt màu vào xơ trong môi trường acid, còn bản thân thuốc nhuộm thì có phản ứng trung tính. Theo cấu tạo hóa học, đa số thuốc nhuộm acid đều thuộc nhóm azo, số ít hơn là dẫn xuất của antraquynon, triarymetan, xanten, azin, một số tạo phức với kim loại. Theo tính chất kỹ thuật thuốc nhuộm acid được chia làm 3 nhóm: Thuốc nhuộm acid thông thường. Thuốc nhuộm acid cầm màu. Thuốc nhuộm acid chứa kim loại. Ba nhóm thuốc nhuộm này có đặc điểm chung là đủ màu, màu của chúng tươi và thuần sắc. Đa số chúng là muối của các acid mạnh và bazơ mạnh nên khi hòa tan trong nước thì phân ly thành các ion như sau: Ar-SO3Na Ar-SO3 - + Na+ Các ion mang màu của thuốc nhuộm tích điện âm (Ar-SO3 -) sẽ hấp phụ vào các tâm tích điện dương của vật liệu. Nhờ vậy mà nó được gắn màu hay giữ lại trên vật liệu bằng mối liên kết ion hay liên kết muối, đó là đặc điểm riêng của thuốc nhuộm acid. Ngoài ra chúng cũng được liên kết với các vật liệu bằng lực vanderwaals, liên kết hydro và liên kết phối trí, nhưng những lực liên kết này không mạnh. Sau đây là ba màu thuốc nhuộm acid chúng em nghiên cứu: Thuốc nhuộm: acid yellow 17 Công thức phân tử: C16H10Cl2N4Na2O7S2 Trọng lượng phân tử: 551.28 Công thức cấu tạo: Hình 1.1: Công thức cấu tạo của thuốc nhuộm acid yellow 17. Thuốc nhuộm acid blue US1 Công thức phân tử: C27H31N2NaO6S2 Trọng lượng phân tử: 566.66 Công thức cấu tạo: Hình 1.2: công thức cấu tạo của thuốc nhuộm acid Blue US1. Thuốc nhuộm acid red 52 Tên sản xuất: Sulforhodamine b Tên quốc tế: Sulforhodamine b monosodium salt;sulforhodamine b; phloxine rhodamine;xylene red;xylene red b; (6-(diethylamino)-9-(2,4-disulfophenyl)-3h-xanthen-3-ylidene)diethyl-ammoniu;acidleatherredkb;AcidroseredB. Công thức phân tử : C27H29N2NaO7S2 Khối lượng phân tử: 580.65 Công thức cấu tạo: Hình 1.3: công thức cấu tạo của thuốc nhuộm acid red 52. Phương pháp đo màu của máy quang phổ Cấu tạo Chia làm hai phần: phần quang học và phần đo. Phần quang học: nguồn sáng (L), khe sáng và điều chỉnh được (E), ống chuẩn trực (K), quang kế hệ tán sắc với một lăng kính hay hai lăng kính, kính lọc nhiễu xạ hay cách tử nhiễu xạ… để tạo ra tia đơn sắc (P), thấu kính O, khe điều chỉnh ánh sáng thoát ra (A). Phần đo: bộ thu quang điện (F), khuyếch đại (V), bộ vi xử lý và hiển thị kết quả đo nối với các thiết bị ngoại vi như màn hình, máy in. Tiến hành đo màu Bức xạ xuất phát từ trong quang phổ kế thông qua khúc xạ, nhiễu xạ, tán xạ thành một dải ánh sáng toàn sắc. Ứng với góc xoay của lăng kính P, sẽ cho bức xạ đơn sắc có bước sóng xác định đi vào khe hẹp A. Khe A cho ánh sáng thoát ra được điều chỉnh tương ứng với độ rộng Dl. Tia đơn sắc sẽ chiếu lên mẫu đo và mẫu trắng chuẩn. Tỷ lệ giữa phần ánh sáng đơn sắc trả lại từ mẫu đo so với ánh sáng đơn sắc trả lại từ mẫu trắng chuẩn gọi là độ phản xạ tại một bước sóng Rl . Độ phản xạ được dẩn vào bộ thu quang điện F, được xử lý cuối cùng cho ra số liệu và những đường cong phản xạ. Nước thải nghành dệt nhuộm Giới thiệu Đề tài chúng em nghiên cứu về khả năng khử màu của thuốc nhuộm acid, đây là một phần trong việc xử lý ô nhiễm nước thải dệt nhuộm, để hiểu hơn về nước thải dệt nhuộm và có hướng ứng dụng đề tài hợp lý nhất chúng em sẽ đi tìm hiểu về phần nước thải mà chủ yếu là nước thải dệt nhuộm. Nguồn nước thải phát sinh trong công nghệ dệt nhuộm là từ các công đoạn: Hồ sợi. Giũ hồ Nấu, tẩy. Nhuộm và hoàn tất. Lượng nước chủ yếu là ở quá trình giặt sau mỗi công đoạn. Đặc trưng nước thải sản xuất gồm: Tạp chất rắn lơ lửng. Nước thải sinh ra từ dệt nhuộm thường có nhiệt độ cao, độ pH lớn, chứa nhiều loại hóa chất, thuốc nhuộm khó phân hủy, độ màu cao. Muối, hoá chất hữu cơ trong thuốc nhuộm, mực in. Chất hoạt động bề mặt. Chất điện ly, chất ngấm, chất tạo môi trường. Men, tinh bột. Chất oxi hoá. Với tính chất nước thải dệt nhuộm như trên nếu không được xử lý tốt, nước thải do dệt nhuộm sẽ gây ô nhiễm môi trường, đặc biệt là ô nhiễm nguồn nước mặt, nước ngầm. Tác nhân gây ô nhiễm Các quá trình xử lý hoá học vật liệu dệt, còn được gọi là “xử lý ướt” (tiền xử lý), nhuộm, in hoa, có thể đến cả xử lý hoàn tất cuối cùng thuộc loại hình công nghiệp sử dụng nhiều nước. Tính được rằng để xử lý 1kg hàng dệt nhuộm cần 50 đến 300 lít nước và cũng thải ra gần chừng ấy nước thải. Mức độ ô nhiễm nước thải phụ thuộc chủ yếu vào các hoá chất, chất trợ, thuốc nhuộm sử dụng và vào các công nghệ và trình độ lạc hậu, trung bình hay tiên tiến, hiện đại của các công nghệ áp dụng. Những chất gây ô nhiễm nước thải được chia làm 3 nhóm chính: Nhóm thứ nhất: các chất độc đối với vi sinh và cá Xút (NaOH), Na2CO3 được dùng với số lượng lớn để nấu vải sợi bông, xử lý nước thải sợi pha, dùng làm bóng không được thu hồi thải ra ngoài với nồng độ cao. Axit vô cơ, như axit H2SO4 để trung hoà xút và “hiện màu” thuốc nhuộm hoàn nguyên tan (indigosols). NaClO dùng để tẩy trắng vải sợi bông và giặt mài, natri clorit (NaClO2) để tẩy trắng hàng dệt kim. Các chất khử vô cơ nồng độ cao như natri sunfua (Na2S) dùng nhuộm thuốc nhuộm lưu hoá hay natri hidrosunfit (Na2S2O4) trong nhuộm hoàn nguyên. Dung môi hữu cơ clo hoá, như các chất tải dùng nhuộm polyester ở 1000C hay vải pha polyester/len ở nhiệt độ >1000C. Formandehit trong các chất cầm màu và các chất trong xử lý chống nhăn. Các kim loại nặng có thể có trong xút công nghiệp sản xuất bằng điện cực thuỷ ngân. Tạp chất kim loại nặng (Cu, Cr, Zn, Pb, Co, Ni) có trong một số thuốc nhuộm sử dụng, nhất là thuốc nhuộm hoàn nguyên và cả trong một số thuốc nhuộm hoạt tính. Một lượng tải hữu cơ “AOX” đi vào nước thải từ một số thuốc nhuộm hoàn nguyên, phân tán, hoạt tính và một số ít pigment. Các chất ngấm và tẩy rửa không ion trên cơ sở ankyl phenol etoxylat “APEO” có thể phân giải vi sinh đến 80%, nhưng sản phẩm phân giải lại độc với cá. Muối Glube (Na2SO4) dùng trong nhuộm thuốc nhuộm hoạt tính thải ra với nồng độ cao (>2g/l). Nhóm chất thứ hai: khó phân giải vi sinh Phần lớn thuốc nhuộm và chất tẩy trắng quang học “OBA”. Phần lớn các chất nhũ hoá, tạo phức, càng hoá và chất làm mềm. Các chất hồ sợi polyester và sợi pha như “PVA” và poliacrylat. Các polymer tổng hợp thường dùng làm chất hồ hoàn tất. Các chất hồ tổng hợp trong in pigment. Các chất giặt vòng thơm, mạch ankylen oxit dài hoặc mạch nhánh ankyl. Dầu khoáng và silicon tách ra trong xử lý trước vải tổng hợp (như sợi spandex) . Nhóm thứ ba: các chất ít độc và có thể phân giả bởi vi sinh Xơ sợi và các tạp chất thiên nhiên của chúng bị loại ra trong xử lý trước. Tinh bột (khoai mì) không biến tính hoá học dùng hồ sợi dọc. Các chất giặt với ankyn mạch thẳng, các chất tẩy rửa”mềm”. Axit acetic (CH3COOH) và axit formic (HCHO) dùng điều chỉnh pH. Muối trung tính ở nồng độ thấp. Các tiêu chuẩn kiểm soát nước thải ô nhiễm Các chỉ tiêu sinh thái (Ecological Parameters or Ecology Data) Mức độ ô nhiễm của nước thải “dệt nhuộm” được đánh giá bằng các thông số hay chỉ tiêu sinh thái. Các chỉ tiêu sinh thái tổng quát được lựa chọn để phân tích, đánh giá mức độ ô nhiễm nước thải dệt nhuộm trước hết là: “nhu cầu oxi hoá học” (chemical oxygen demand) viết tắt là COD và “nhu cầu oxi sinh hoá” (biochemical oxygen demand) viết tắt là BOD. Hai đại lượng này là “thước đo” tổng các chất có thể oxi hoá trong nước thải nhuộm, vì vậy là hai chỉ tiêu đặc trưng nhất để đánh giá mức độ ô nhiễm của nước thải dệt nhuộm. Nhu cầu sinh hóa (BOD – Bichemical Oxygen Demand) là hàm lượng oxy do vi sinh vật sử dụng để oxy hóa các hợp chất hữu cơ trong bóng tối ở điều kiện tiêu chuẩn về nhiệt độ và thời gian. Trị số BOD được thể hiện bằng (g) hoặc (mg) theo đơn vị thể tích. BOD phản ánh được lượng chất hữu cơ bị phân hủy có trong mẫu nước. Bảng 1.2: Mối quan hệ giữa chỉ số BOD và chất lượng nước BOD(mg/l) Chất lượng nước 1-2 Rất tốt 3-5 Trung bình 6-9 Khá ô nhiễm >10 Rất ô nhiễm Nhu cầu oxy hóa học (COD – Chemical Oygen Demand) là số (mg) oxy cần thiết để oxy hóa các hợp chất hữu cơ có trong 1 lít nước. Trị số COD thể hiện bằng (g) hoặc (mg) O2 theo đơn vị thể tích.Hiện nay, người ta thường dùng tác nhân oxy hóa mạnh như kalidicromat (KCr2O7) để xác định nhu cầu oxy hóa học vì chất này có thể oxi hóa đến 90% chất hữu cơ. Nhóm các chỉ tiêu khác cũng không kém phần quan trọng Các thông số sinh thái bổ sung Hàm lượng kim loại nặng: kim loại từ các nguồn thuốc nhuộm, hoá chất công nghệ, chất trợ bao gồm Cu, niken (Ni), chì (Pb), crôm (Cr), coban (Co), kẽm (Zn), thuỷ ngân (Hg) có trong nước thải dệt nhuộm. Do đó hàm lượng các kim loại nặng phải là một thông số sinh thái bổ sung cần phân tích xác định. Ngoài ra kim loại vào nước thải từ đường ống dẫn và cả từ nước cấp nữa. Halogen hữu cơ, viết tắt là AOX (Adsorbable Organic Halogen). AOX trong nước thải dệt nhuộm có nguồn gốc từ một số chất trợ, từ thuốc nhuộm, từ việc sử dụng clo tẩy trắng. Màu nước thải nhuộm, đôi khi rất đậm. Nó cản trở bức xạ mặt trời đi vào nước, ảnh hưởng bất lợi đến khả năng của các vi sinh phân giải các hợp chất hữu cơ và gây ấn tượng thẩm mỹ xấu. Mặc dù không được đưa vào tiêu chuẩn nước thải công nghiệp ở nước ta, nhưng để đánh giá ô nhiễm nước thải dệt nhuộm cần đưa vào chỉ tiêu màu sắc vào nhóm các thông số sinh thái bổ xung. Một nhóm các thông số quan trọng khác đặc trưng cho nước thải dệt nhuộm là các chỉ tiêu độc hại sinh thái (ecotoxicological data) hay độ độc với các loài thuỷ sinh (aquatic toxicities). Nó đánh giá tác hại của nước thải lên các loài động vật và thực vật sống trong nước. Độ độc thuỷ sinh thường thông qua 4 thông số dưới đây: Độ độc với vi sinh IC10- là nồng độ ức chế 10% (inhibition concentration-10%). Độ độc với cá LC50- là nồng độ làm chết 50% (lethal concentration-50% mortality). Daphania và tảo EC50 (effec concentration- 50% effect). Độ độc với vi sinh (bacterial toxicity) và độ độc với cá có thể là hai chỉ tiêu đặc trưng cho mức độ độc hại của nước thải dệt nhuộm. Trên thế giới, ở các nước công nghiệp tiên tiến (Đức, Áo, thụy sĩ....) đều có tiêu chuẩn nước thải ‘dệt nhuộm’ vì tính đặc thù của ngành công nghiệp này. Ở Việt Nam chúng ta ngành dệt may đang phát triển mạnh mẽ hiện nay cần phải xây dựng và ban hành ngay các tiêu chuẩn nước thải dệt nhuộm với các thông số đặc trưng như đã nêu ở trên. Hệ thống các phương pháp xử lý nước thải  Các phương pháp xử lý Quá trình xử  lý hóa học nhằm điều chỉnh, trung hòa độ pH của nước thải, dùng keo tụ, tạo bông để loại bỏ  các loại thuốc nhuộm khó phân hủy sinh học sau khi xử lý sinh học. Quá trình xử  lý sinh học diễn ra nhờ sự phân hủy hiếu khí của bùn hoạt tính lơ lửng để phân hủy các chất hữu cơ trong nước thải. Dây chuyền xử lý nước thải:      Nước thải đầu vào -> " SCR thô ->" Hầm bơm ->" SCR tinh ->" bể điều hòa ->" Bể trộn + bể phản ứng -> " Bể lắng 1 -> " Bể lọc sinh học ->" Bể khử trùng ->"Nước thải đầu ra. Phương pháp hoá lý, mà thực chất là phương pháp keo bằng phèn nhôm dùng xử lý nước thải nhuộm ở các xí nghiệp liên doanh Donatex, cty Dệt may 7 và cty 28. Các hệ thống XLNT đều do trung tâm công nghệ môi trường (ECO) thuộc cty Tecapro (TP Hồ Chí Minh) thiết kế, xây dựng, lắp đặt thiết bị và chuyển giao công nghệ . Sơ đồ hệ thống XLNT như sau : Nước thải Song chắn rác Bể điều hoà Chất ổn định pH Phèn nhôm Bể phản ứng polyme Bể tạo cặn Bể lắng Bể nén, ép cặn hoặc phơi Nước thải đã xử lý Bùn thải Bể lọc nhanh Hình 2.1: Hệ thống XLNT đều do trung tâm công nghệ môi trường (ECO) thuộc cty Tecapro (TP Hồ Chí Minh). Những kết quả XLNT của phương pháp này đạt được: Giảm đáng kể hàm lượng tổng chất rắn lơ lửng (SS), chỉ tiêu COD giảm khoảng 40-50% và tương tự như vậy đối với BOD. Giảm được màu nước thải. Tuy nhiên nước thải ngày càng có mức độ ô nhiễm cao nếu xử lý keo tụ bằng phèn nhôm thì hoàn toàn không thể đạt được tiêu chuẩn loại B. Xử lý nước thải bằng phương pháp hoá lý kết hợp với vi sinh tại công ty dệt Choongnam Vietnam Textile Co.Ltd (Nhơn Trạch, Đồng Nai). Bể chứa số 2 Bể trung hòa Bể thoáng khí Bể lắng số 2 Bùn hoạt tính Nước đã xử lý dẫn ra ngoài Bể làm đặc bùn Tách nước Thải bùn Bể keo tụ Bể lắng số 1 Bể chứa bùn Nứơc thải nhuộm Bể chứa số 1 Nước đã xử lý sơ bộ H2SO4 Nước thải xử lý trước FeSO4 Polime Polime Đặc trưng nước thải là kiềm tính cao (pH từ 10-12), COD thực tế đến 1700mg/l, và nước thải có màu rất đậm. Hình 2.2: Sơ đồ xử lý nước thải bằng phương pháp hoá lý kết hợp với vi sinh tại công ty dệt Choongnam Vietnam Textile Co.Ltd (Nhơn Trạch, Đồng Nai). Kết quả thu được: nước thải xử lý đạt tiêu chuẩn ở mức cho phép của nước thải loại B và màu nước chỉ còn nhờn nhợt. Đây là phương pháp có công suất lương đối lớn và hoạt động có hiệu quả. Phèn nhôm Chất đa điện ly Chất keo tụ đặc biệt Khoang chứa bùn Máy tách nước làm khô bùn Bùn thải Lọc nước thải Bể điều hòa Trung hòa-điều chỉnh pH Đông tụ - keo tụ Tuyển nổi Bể tiếp xúc Bể thoáng khí xử lý sinh học Bể thanh lọc Than hoạt tính Chất đa điện ly H2SO4 Quy trình phức hợp gồm nhiều công đoạn: xử lý trước, xử lý hoá lý, xử lý vi sinh hiếu khí, lọc than hoạt tính của công ty dệt Việt Thắng: Nước thải Hình 2.3: Quy trình phức hợp của công ty dệt Việt Thắng Xử lý trước: đầu tiên nước thải được tập hợp vào bơm trung tâm, sau đó được dẫn qua các thiết bị lọc, bể điều hoà. Tại đây nước thải được khuấy trộn để tạo ra hổn hợp đồng thể, nước thải có tính kiềm cao nên được trung hoà bằng axit H2SO4 để giữ pH ở giới hạn cho phép. Xử lý hoá lý: sau sàng lọc, điều hoà, trung hoà điều chỉnh pH, nước thải được bơm vào thiết bị keo tụ để sử lý đông tụ - keo tụ. Ngòai ra còn để khử màu thuốc nhuộm hoạt tính trong nước thải. Sau đó nước thải được đi đến thiết bị tuyển nổi. Những bông cặn lớn đã tạo thành được loại bỏ bằng công nghệ tuyển nổi không khí hoà tan, có nguyên lý như sau: hàng tỷ bọt khí được phun vào nước và chúng sẽ gắn chặt vào các đám bông keo tụ. Tất cả những bông bùn keo tụ có bọt khí gắn kết đó sẽ nhanh chóng nổi lên mặt nước và được vớt đi bằng thiết bị nạo quét. Sau xử lý keo tụ và tuyển nổi giảm mạnh chỉ tiêu SS (khoảng 70%), 30-40%COD và một lượng tương ứng BOD cùng một phần màu sắc. Xử lý sinh học: tại đây nước thải được xử lý bằng bùn hoạt tính để phân giải các chất có thể phân giải bằng vi sinh trong nước thải. Các thiết bị thanh lọc tách bùn ra khỏi nước sạch đã xử lý. Nước sạch đã được xử lý thải ra ngoài, còn bùn dư cho quay lại hệ thống xử lý nước thải. Ưu điểm và nhược điểm của các hệ thống xử lý nước thải nói trên: Ưu điểm: là quá trình xử lý nước thải liên hoàn đảm bảo kết quả ổn định, vững chắc. Nhược điểm: Đầu tư lớn, chiếm diện tích không nhỏ. Gía thành vận hành tương đối cao nếu vận hành đầy đủ toàn bộ hệ thống bao gồm cả lọc than hoạt tính và khử màu triệt để bằng chất ‘keo tụ đặc biệt’ Colfloc RD (Ciba). Sản sinh một lượng bùn lớn. Ở các hệ thống XLNT trước, trung hoà nước thải kiềm tính lớn có nhiều thuốc nhuộm hoạt tính bằng H2SO4 là một nhược điểm đáng kể, có thể dẫn đến hậu quả xấu sau này. Ngoài ra còn có một số công nghệ xử lý nước thải với quy mô vừa và nhỏ khác của các công ty dệt Nha Trang, công ty dệt Bình Lợi (ở TPHCM)..... Tổng quan về điện phân Điện phân Điện phân là quá trình oxi hóa, quá trình khử xảy ra tại các bề mặt điện cực khi có dòng điện một chiều đi qua dung dịch chất điện li hay chất điện li ở trạng thái nóng chảy. Nguồn điện một chiều (pin, acquy) Dây dẫn điện Catot Anot Bình điện phân Hình 3.1: Bình điện phân Điện cực nối với cực âm của máy phát điện (nguồn điện một chiêu gọi là cực âm hay catot). Điện cực nối với cực dương của máy phát điện gọi là cực dương hay anot. Tại bề mặt catot luôn luôn có quá trình khử xảy ra, là quá trình trong đó chất oxi hóa nhận điện tử để tạo thành chất khử tương ứng. Tại bề mặt anot luôn luôn có quá trình oxi hóa xảy ra, là quá trình trong đó chất khử cho điện tử để tạo thành chất oxi hóa tương ứng. Khi có nhiều chất khử khác nhau, thường là các ion kim loại khác nhau (ion dương) cùng về catot thì chất nào có tính oxi hóa mạnh nhất sẽ bị khử trước; Khi hết chất oxi hóa mạnh nhất mà còn điện phân tiếp tục, thì chất oxi hóa yếu hơn kế tiếp mới bị khử sau. Thí dụ: Có các ion kim loại Cu2+, Ag+, Fe2+ cùng về catot bình điện phân. Do độ mạnh tính oxi hóa giảm dần như sau: Ag+ > Cu2+ > Fe2+, nên quá trình khử lần lượt xảy ra ở catot là: Ag+ + e Ag Cu2+ + 2e Cu Fe 2+ + 2e Fe Tương tự, khi có nhiều chất khử khác nhau, thường là các anion phi kim khác nhau, cùng về anot, thì chất khử nào mạnh nhất sẽ bị oxi hóa trước; Khi hết chất khử mạnh nhất mà còn điện phân tiếp tục thì chất khử yếu hơn kế tiếp mới bị oxi hóa sau... Thí dụ: Có các anion Cl-, Br -, I- cùng về anot trơ Do độ mạnh tính khử giảm dần như sau: I- > Br - > Cl, nên quá trình oxi hóa lần lượt xảy ra ở anot như sau: 2I- - 2e I2 Br - 2e Br2 Trong dãy thế điện hóa (dãy hoạt động hóa học các kim loại, dãy Beketov), người ta sắp các kim loại (trừ H2 là phi kim) theo thứ tự từ trước ra sau có độ mạnh tính khử giảm dần, còn các ion kim loại tương ứng (ion dương) từ trước ra sau có độ mạnh tính oxi hóa tăng dần. K Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb H Cu Ag Hg Pt Au Chiều tính khử giảm dần. K+ Ca2+ Na+ Mg2+ Al3+ Mn2+ Zn2+ Cr3+ Fe2+ Ni2+ Sn2+ Pb2+ H+ Cu2+ Ag+ Hg2+ Pt2+ Au3+ Chiều tính oxi hóa tăng dần. Thế điện hóa chuẩn của cặp oxi hóa khử nào càng lớn về đại số thì chất oxi hóa đó càng mạnh và chất khử tương ứng càng yếu. Eo Ox1 / Kh1 > Eo Ox 2 / Kh 2 ⇒ Tính oxi hóa: Ox1 > Ox2 Tính khử: Kh1 < Kh2 Thực nghiệm cho biết: E0Ag+/Ag > E0Fe3+/Fe2+ > E0Cu2+/Cu > E0Fe2+/Fe Do đó, tính oxi hóa: Ag+ > Fe3+ > Cu2+ > Fe2+ Tính khử: Ag < Fe2+ < Cu < Fe Độ mạnh tính khử các chất giảm dần như sau: (áp dụng trong điện phân) Tính khử: Kim loại (trừ Pt) > S2− > I− > Br − > Cl− > OH− > H2O (Do tính oxi hóa: Cl2 > Br2 > I2 > S nên độ mạnh tính khử: Cl− < Br − < I− < S2-) Thí dụ: Hãy viết các quá trình khử lần lượt xảy ra ở catot khi điện phân dung dịch có chứa các cation: Fe3+, Ag+, Cu2+. Do tính oxi hóa giảm dần như sau: Ag+ > Fe3+ > Cu2+ > Fe2+ > H2O nên quá trình khử lần lượt xảy ra ở catot là: Ag+ + e Ag (1) Fe 3+ + e Fe2+ (2) Cu2+ + 2e Cu (4) Fe 2+ + 2e Fe (5) H2O+2e H2+ 2OH-(6) Nếu không có Cu2+, thì Fe3+ bị khử tạo ra Fe mà không xảy ra quá trình (2) Fe3+ + 3e Fe Nếu có sự tạo ion H+ ở anot thì H2O không bị khử quá trình (5) mà là ion H+ bị khử: 2H+ + 2e H2 Do ion H+ trong nước có nồng độ rất nhỏ nên ion H+ của axit dễ bị khử hơn ion H+ của H2O, H2O tham gia điện phân ở quá trình (5) thực chất là H+ của H2O bị khử. Điện phân dung dịch NaCl dùng điện cực trơ titan Khi điện phân dung dịch chất điện li thì tùy trường hợp, dung môi nước của dung dịch có thể tham gia điện phân ở catot hay ở anot. Nếu nước tham gia điện phân thì: Ở catot: Do ở catot có quá trình khử xảy ra nên H2O sẽ đóng vai trò chất oxi hóa, nó bị khử tạo khí hiđro (H2) thoát ra, đồng thời phóng thích ion OH- ra dung dịch. H2O H+ + OH- H+ + 2e H2 H2O +2e H2 + OH- Ở anot: Do ở anot có quá trình oxi hóa xảy ra nên nước sẽ đóng vai trò chất khử, nó bị oxi hóa tạo khí oxi (O2) thoát ra, đồng thời phóng thích ion H+ ra dung dịch. 2H2O 2 H+ + 2OH- 2OH- - 2e ½ O2 + H+ 2H2O - 2e 1/2 O2 + 2 H+ Ở catot Thực nghiệm cho thấy khi điện phân dung dịch chứa các ion kim loại đứng sau nhôm (Al) trong dãy thế điện hóa thì các ion kim loại này bị khử tạo thành kim loại bám vào điện cực catot. Ion nào càng đứng sau thì có tính oxi hóa càng mạnh nên càng bị khử trước ở catot. Hiểu là kim loại đứng sau nhôm có tính khử yếu, do đó ion các kim loại này (ion dương) có tính oxi hóa mạnh.Chúng có tính oxi hóa mạnh hơn nước nên các ion dương này bị khử trước nước. K Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb H Cu Ag Hg Pt Au Mn+ + ne M (Ion kim loại) (kim loại đứng sau Al) Thí dụ: Ion Cu2+ về catot bình điện phân khi điện phân dung dịch có chứa ion Cu2+ thì ion này bị khử ở catot: Cu2+ + 2e Cu Còn khi điện phân dung dịch chứa ion kim loại từ nhôm trở về trước (ion kim loại Al3+, Mg2+, ion kim loại kiềm thổ, ion kim loại kiềm) thì các ion kim loại này không bị khử ở catot mà là H2O của dung dịch bị khử tạo H2 bay ra và phóng thích ion OH- trong dung dịch (ion OH- kết hợp ion kim loại tạo hiđroxit kim loại tương ứng). Có thể hiểu là các kim loại từ Al trở về trước có tính khử mạnh rất mạnh, nên các ion kim loại này có tính oxi hóa rất yếu, yếu hơn H2O. Do đó H2O bị khử trước ở catot.Và một khi nước bị khử ở catot thì đây cũng là giai đoạn chót ở catot, vì khi hết nước thì cũng không còn dung dịch nữa, nên sự điện phân sẽ ngừng. Các ion kim loại từ Al trở về trước chỉ bị khử tạo kim loại tương ứng khi điện phân nóng chảy chất điện có chứa các ion này. 2H2O + 2e H2+ 2OH- Ở Anot Quá trình oxi hóa ở anot phụ thuộc vào bản chất của chất làm điện cực anot và bản chất của anion đi về phía điện cực. Nếu anot tan (không trơ, không bền): Anot được làm bằng các kim loại thông thường (trừ Pt) (như Ag, Cu, Fe, Ni, Zn, Al...) thì kim loại dùng làm anot oxi hóa (bị hòa tan) còn các anion đi về anot không bị oxi hóa. Có thể hiểu một cách gần đúng là kim loại được dùng làm kim loại có tính khử mạnh hơn các chất khử khác đi về anot trong dung dịch, nên kim loại được dùng làm điện cực anot bị oxi hóa trước. Và một khi điện cực anot bị oxi hóa (bị ăn mòn) thì đây cũng là giai đoạn cuối ở anot. Bởi vì khi hết điện cực anot, thì sẽ có sự cách điện và sự điện phân sẽ dừng. Thí dụ: Anot được làm bằng kim loại đồng (Cu) Cu (anot) + 2e Cu2+ Nếu anot không tan (trơ, bền): anot được làm bằng bạch kim (Platin, Pt) hay than chì (Cacbon graphit). Nếu anion đi về anot là các anion không chứa O như Cl-, Br-, I-, S2-.... thì các anion này bị oxi hóa ở anot. Thí dụ: Anion Cl- đi về anot trơ, thì ion Cl bị oxi hóa ở anot 2Cl- - 2e Cl2 Nếu anion đi về anot là anion có chứa O như NO3-, SO42-, PO43-, CO32-... thì các anion này không bị oxi hóa ở anot mà là H2O của dung dịch bị oxi hóa tạo O2 thoát ra, đồng thời phóng thích ion H+ ra dung dịch (ion H+ kết hợp với anion tạo thành axit tương ứng). Và một khi nước đã bị oxi hóa ở anot thì đây cũng là giai đoạn chót ở anot. Vì khi hết nước mới đến các chất khử khác bị oxi hóa, lúc này không còn là dung dịch nữa, nên sự điện phân dừng. Thí dụ: Anion NO3- đi về anot trơ trong dung dịch, thì anion này không bị oxi hóa mà là nước của dung dịch bị oxi hóa. 2H2O - 2e 1/2 O2 + 2 H+ (H+ +NO3- HNO3) Thí dụ: Điện phân dung dịch NaCl, dùng điện cực trơ. Dd NaCl (Na+ , Clˉ, H2O) Catot (-) anot (+) 2H2O +2e- → H2 + 2OHˉ 2Clˉ – 2e- → Cl2 (1) 2OHˉ – 2e- → 1/2O2 + H2O(2) 2NaCl → 2Na+ +2Clˉ + 2H2O + 2eˉ → H2 + OHˉ 2Clˉ – 2eˉ → Cl2 2NaCl + H2O dpdd H2 + 2NaOH + Cl2 natri clorua + nước → hidro + xút + clo (catot) (anot) Nếu không có màng ngăn xốp giữa catot và anot thì có thêm phản ứng phụ: 2NaOH + Cl2 → NaCl + NaClO +H2O Nếu bình điện phân có vách ngăn, sau khi điện phân hết NaCl, thu được dung dịch gồm: NaOH, H2O. Nếu tiếp tục điện phân, tức điện phân dung dịch NaOH. 2NaOH 2Na+ + 2OH- 2H2O + 2eˉ H2 + OHˉ 2OH- - 2e ½ O2 + H2O H2O đp H2 + ½ O2 Như vậy khi điện phân dung dịch muối ăn, điện cực trơ, có vách ngăn xốp giữa catot với anot, thì ở giai đoạn đầu, NaCl bị điện phân trước, thu được khí hiđro ở catot, khí clo ở anot, dung dịch xút bên ngăn catot. Sau khi hết muối ăn, đến điện phân dung dịch xút, thực chất là nước của dung dịch bị điện phân, tạo khí hiđro ở catot, khí oxi ở anot, thể tích H2 gấp đôi thể tích khí O2. Còn NaOH còn nguyên trong dung dịch, có lượng không đổi, nhưng nồng độ ngày càng tăng dần (là do dung môi nước ngày càng mất đi). Định luật Faraday Khối lượng của chất tạo ra ở điện cực bình điện phân tỉ lệ với đương lượng của chất đó, với cường độ dòng điện và thời gian điện phân (hay khối lượng của chất tạo ra ở điện cực tỉ lệ với đương lượng của chất đó và điện lượng qua bình điện phân). m = Trong đó: mA: khối lượng chất giải phóng ở điện cực (gam) MA: khối lượng mol nguyên tử của chất thu được ở điện cực nA: số electron mà nguyên tử hoặc ion đã cho hoặc nhận I: cường độ dòng điện (A) t: thời gian điện phân (s) F: hằng số Faraday là điện tích của 1 mol electron hay điện lượng cần thiết để 1 mol electron chuyển dời trong mạch ở catot hoặc ở anot (F = 1,602.10-19.6,022.1023 ≈ 96500 C.mol- MA/nA: đương lượng gam hóa học. Biểu thức liên hệ: Q = I.t = 96500.ne  ne = (ne là số mol electron trao đổi ở điện cực) Công thức Faraday còn viết dưới dạng số mol của A thu được ở điện cực (Trong tính toán hóa học thường dùng số mol để dễ liên hệ hơn) n’A= = n’A: Số mol của chất A tạo ở điện cực bình điện phân. I: Cường độ dòng điện, tính bằng Ampere. t: Thời gian điện phân, tính bằng giây. Thí dụ: Với quá trình oxi hóa ở anot: 2Cl- - 2e Cl2 Cl- - e ½ Cl2 Khối lượng (g) Cl2 thu được ở anot: mCl2= Số mol Cl2 thu được ở anot: n' Cl2 = Khối lượng (g) Cl thu được ở anot: mCl = Số mol Cl thu được ở anot: n' Cl = Với quá trình oxi hóa tạo khí oxi ở anot: 2O2- - 4e O2 O2- - 2e ½ O2 2OHˉ – 2e ½ O2 + H2O 4OHˉ – 4e O2 + 2H2O H2O - 2e ½ O2 + 2 H+ 2H2O - 4e O2 + 4 H+ Khối lượng O2 (g) thu được ở anot: mO2 = Khối lượng O (g) thu được ở anot: mO = Số mol O2 thu được ở anot: n' O2 = Số mol O thu được ở anot: n' O = Với quá trình khử tạo khí hiđro ở catot: Khối lượng H2 (gam) thu được ở catot: m H2 = Khối lượng H (gam) thu được ở catot: m H = Số mol H2 thu được ở catot: n' H2 = Số mol H thu được ở catot: n' H = Ứng dụng của phương pháp điện hóa Quá trình điện hóa Qúa trình điện hóa: được áp dụng vào công nghiệp mạ điện, công nghiệp điện phân nước sản xuất oxy và hidro siêu sạch, điện phân dung dịch muối ăn sản xuất xút, clo, trong tổng hợp các hợp chất vô cơ có khả năng oxy hóa mạnh như H2O2, O3, KMnO4, NaClO3, ...Trong sản xuất các chất hữu cơ như adiponitril (CH2CH2CN)2 dùnh cho sản xuất nylon 66, trong sản xuất pin và trong bảo vệ chống ăn mòn điện hóa. Tuy nhiên, gần đây quá trình điện hóa đã được nghiên cứu ứnh dụng vào lĩnh vực môi trường để xử lý làm sạch nước và nước thải, chủ yếu là nước thải công nghiệp. Quá trình oxy hóa điện hóa Qúa trình oxy hóa điện hóa nhằm ứng dụng để xử lý các chất ô nhiễm hữu cơ độc hại, khó phân hủy trong nước trong nước thải thành những chất không độc hại hoặc ít độc hại hơn, dễ bị phân hủy sinh học nhờ quá trình oxy hóa ở anot. Trong quá trình này thường sử dụng các anot không hòa tan điện hóa, thông thường là điện cực titan được phủ bằng phương pháp điện hóa một lớp rất mỏng các kim loại quý như ruteni, rodi, platin, iridi, dioxit chì, thiếc hoặc graphít và thùng điện phân có thể có màng ngăn hoặc không có màng ngăn. Do quá trình oxy hóa ở anot, các chất ô nhiễm hữu cơ bị phân hủy có thể hoàn toàn, tạo thành CO2, nước, amonia và các ion vô cơ, hoặc có thể tạo ra sản phẩm đơn giản dễ phân hủy sinh học hoặc ít độc hơn. Phương pháp này đã được áp dụng và xử lý các hợp chất xyanua, amin, alcohol, aldehyl, keton, thuốc nhuộm azo, sunfua, mecaptan, antraquinon,…trong nước thải công nghiệp nhuộm,sản xuất hóa chất bảo vệ thực vật, hóa dược, hóa dầu, công nghiệp giấy v.v… Các kết quả nghiên cứu ở cấp độ thử nghiệm Vlyssides et at, (1998) đã nghiên cứu ở cấp độ thử nghiệm áp dụng quá trình oxi hóa điện hóa để xử lý nước thải của nhà máy dệt nhuộm ở Thrace, Hy Lạp. Titan/Platin được sử dụng làm điện cực anốt và thép không rỉ 304 được sử dụng làm điện cực catốt. Các điện cực được cung cấp dòng điện 20V và 50A. Thùng điện phân có dung tích 5 lít, dùng bơm để cho dung dịch lưu chuyển tuần hoàn với tốc độ 10l/phút. Hệ thống làm lạnh duy trì nhiệt độ nước thải luôn ở 420C. Đặc tính nước thải như sau : BOD5 450 mg/l; COD 1.200 mg/l; màu 3.400 đơn vị ADMI; tổng nitơ Kjeldahl (TKN) 34 mg/l; pH 10. Trong quá trình thử nghiệm, cho thấy nếu đưa thêm NaCl và acid HCl, hiệu suất xử lý COD và xử lý màu được tăng lên. Tải lượng COD giảm được 93% sau 40 phút xử lý với mật độ dòng điện 890mA/cm2 có thêm vào 2 ml NaCl 1% (tương ứng 10.000 mg NaCl/l) và 2 ml HCl 36%. Độ màu theo đơn vị ADMI giảm được 96%, BOD5 giảm được 92% và TKN giảm đến >99%. CHƯƠNG II THỰC NGHIỆM Kế hoạch thực nghiệm Sau khi tìm hiểu về cơ sở lý thuyết chúng em đã có một số kiến thức cơ bản để tiến hành thực nghiệm. Nhưng kiến thức thì vô hạn, sự hiểu biết của chúng em thì có giới hạn nên không thể tránh khỏi sai sót. Mặc dù vậy chúng em đã tìm cách hạn chế và hoàn thành đồ án nghiên cứu khả năng khử màu thuốc nhuộm bằng phương pháp điện phân một cách tốt nhất. Bên cạnh đó chúng em cũng hi vọng khoa và trung tâm hỗ trợ thêm cho chúng em nghiên cứu sâu hơn về đề tài khả năng khử màu thuốc nhuộm acid bằng phương pháp điện phân. Sau đây là kế hoạch thực nghiệm của nhóm chúng em. Các bước tiến hành thực nghiệm: Quét phổ UV-VIS tìm lmax của từng loại thuốc nhuộm acid. Sử dụng lmax dựng đường chuẩn của từng loại thuốc nhuộm. Khảo sát sự ảnh hưởng của các yếu tố như: dòng điện, thời gian điện phân, pH, nồng độ thuốc nhuộm, nồng độ muối NaCl và nhiệt độ đến hiệu suất khử màu. Chọn khoảng khảo sát của 4 yếu tố để quy hoạch thực nghiệm. Quy hoạch thực nghiệm. Tối ưu hóa. Sau khi tối ưu hóa, chọn điều kiện tốt nhất của quá trình điện phân bằng dung dịch NaCl để xử lý màu thuốc nhuộm acid. Bước 1: Quét phổ UV-VIS tìm lmax của từng loại thuốc nhuộm acid Hình 2.1: Phổ UV- VIS của thuốc nhuộm acid yellow 17. Hình 2.2: Phổ UV- VIS của thuốc nhuộm acid Blue US1. Hình 2.3: Phổ UV- VIS của thuốc nhuộm acid red 52. Bước 2: Dựng đường chuẩn Từ đây tìm được lmax của từng màu thuốc nhuộm acid tương ứng để tiến hành đo quang dựng những đường chuẩn tương ứng. Bước 3: Quy hoạch thực nghiệm Từ những đường chuẩn này chúng em tiến hành khảo sát các yếu tố ảnh hưởng đến hiệu suất khử màu thuốc nhuộm acid như: Dòng điện ảnh hưởng như thế nào khi ta tăng hoặc giảm. Thời gian điện phân càng nhiều hay ít có ảnh hưởng như thế nào đến hiệu suất khử màu. pH ảnh hưởng như thế nào đến khả năng khử màu thuốc nhuộm khi điện phân. Nồng độ muối NaCl ảnh hưởng nhiều hay ít đến khả năng khử màu thuốc nhuộm. Nhiệt độ có ảnh hưởng gì đến việc khử màu thuốc nhuộm trong quá trình điện phân khử màu thuốc nhuộm acid hay không? Từ những số liệu trên chúng em sẽ chọn ra 4 yếu tố có ảnh hưởng nhất đến quá trình khử màu thuốc nhuộm bằng phương pháp điện phân để quy hoạch thực nghiệm. Bước 4: Tối ưu hóa Tiến hành quy hoạch thực nghiệm. Sau đó là tối ưu hóa, từ đó sẽ chọn ra những điều kiện tốt nhất của quá trình điện phân bằng dung dịch NaCl để xử lý màu thuốc nhuộm acid. Bước 5: Tiến hành khử màu thuốc nhuộm bằng phương pháp điện phân. DANH MỤC TÀI LIỆU THAM KHẢO [1] Ngô Thị Nga, Trần Văn Nhân, “Giáo trình công nghệ xử lý nước thải”, Nhà xuất bản khoa học và kỹ thuật, Hà Nội (1999). [2] PGS. TS Cao Hữu Lượng, PGS.TS Hoàng Thị Lĩnh, “Hóa học thuốc nhuộm”, Nhà xuất bản khoa học và kỹ thuật. [3] GS. TSKH Trần Mạnh Trí, TS Trần Mạnh Trung, “Các quá trình oxi hóa nâng cao trong xử lý nước và nước thải - Cơ sở khoa học và ứng dụng”, Nhà xuất bản khoa học kỹ thuật. [4] PGS. TS.Đặng Trấn Phòng, “Sinh thái và môi trường trong dệt nhuộm”, Nhà xuất bản khoa học và kỹ thuật Hà Nội. [5] Nguyễn Cảnh, “Quy hoạch thực nghhiệm”, Nhà xuất bản Đại Học Quốc Gia TP Hồ Chí Minh (2004). [6] Nguyễn Công Toàn, “Công nghệ nhuộm và hoàn tất”, Nhà xuất bản Đại Học Quốc Gia TP Hồ Chí Minh (2005). [7] Trần Văn Thạnh, “Hóa học hữu cơ”, Trường Đại Học Bách Khoa Thành Phố Hồ Chí Minh – Bộ môn hữu cơ (1998). [8] Nguyễn Hữu Phú, “Hóa lý và Hóa keo”, Nhà xuất bản khoa học và kỹ thuật, trang 409-411, 423-429. [9] Võ Thị Ngọc Xuân, “Nghiên cứu thực nghiệm và đề xuất công nghệ khả thi xử lý nước thải ngành công nghệ dệt-nhuộm”, Luận văn thạc sĩ, trường Đại Học Bách Khoa Thành Phố Hồ Chí Minh, 1999. [10] “Sổ tay tra cứu thuốc nhuộm”, Viện công nghệ dệt sợi, Hà Nội (1993). [11] Võ Hồng Thái “giáo khoa hóa vô cơ”, vấn đề II vô cơ. [12] PGS. Nguyễn Đức Vân, “hóa học vô cơ” (các kim loại điển hình), Nhà xuất bản khoa học và kỹ thuật Hà Nội. [13] Wedsite http//vietsciences.free.fr,trang146-162. [14] Wedsite [15] Wedsite [16] Wedsite [17] Wedsite [18] Wedsite aspx?CBNumber=CB2775634.

Các file đính kèm theo tài liệu này:

  • docNghiên cứu khả năng khử màu thuốc nhuộm bằng phương pháp điện phân.doc
Luận văn liên quan