Mục tiêu của đề tài là phân lập, tuyển chọn một số chủng Lactobacillus có hoạt tính kháng Vibrio để bổ sung vào chế phẩm probiotic nuôi cá chim vây vàng nhằm mục đích tăng tốc độ tăng trưởng, khả năng kháng bệnh, đảm bảo sự phát triển bền vững của nghề nuôi cá chim vây vàng.
MỤC LỤC
LỜI CẢM ƠN . i
MỤC LỤC ii
DANH MỤC BẢNG . vi
DANH MỤC HÌNH VẼ VÀ ĐỒ THỊ vii
KÍ HIỆU CÁC CỤM TỪ VIẾT TẮT . viii
LỜI MỞ ĐẦU 1
1.1.1. Giới thiệu vê Probiotics 3
1.1.2. Cơ chế tác động của probiotic . 5
1.1.2.1. Sản sinh ra các chất ức chế . 5
1.1.2.2. Cạnh tranh cơ chất, năng lượng với những vi khuẩn khác . 5
1.1.2.3. Cạnh tranh vị trí bám dính với vi khuẩn gây bệnh 6
1.1.2.4. Tăng cường đáp ứng miễn dịch . 6
1.1.2.5. Cải thiện chất lượng nước . 7
1.1.3. Ứng dụng của probiotic 7
1.1.3.1. Ứng dụng của chế phẩm Probiotic trong y học, trong trồng trọt, trong bảo
vệ môi trường. . 7
1.1.3.2. Ứng dụng của chế phẩm Probiotic trong nuôi trồng thủy sản 8
1.1.4. Công nghệ sản xuất chế phẩm probiotics. 11
1.1.4.1. Nguyên liệu 12
1.1.4.2. Nhân giống . 12
1.1.4.3. Thu sinh khối 12
1.1.4.4. Tạo chế phẩm . 12
1.1 . Tổng quan về cá chim vây vàng 14
1.2.1. Giới thiệu chung về cá chim vây vàng . 14
1.2.2. Tình hình nghiên cứu cá chim vây vàng trên thế giới và trong nước 15
1.2.2.1. Tình hình nghiên cứu cá chim vây vàng trên thế giới 15
1.2.2.2. Tình hình nghiên cứu cá chim vây vàng ở Việt Nam . 16
1.2.3. Tình hình bệnh dịch trên cá nuôi nước mặn nói chung và cá chim vây vàng nói
riêng 17
1.2.3.1. Bệnh do nấm, ký sinh trùng . 17
1.2.3.2. Bệnh do virus . 18
1.2.3.3. Bệnh do vi khuẩn 18
1.2 . . Tổng quan về vi khuẩn lactic 20
1.3.1. Giới thiệu về vi khuẩn lactic 20
1.3.1.1. Giới thiệu chung . 20
1.3.1.2. Phân loại vi khuẩn lactic 22
1.3.1.2.1. Lên men đồng hình . 22
1.3.1.2.1. Lên men dị hình 23
1.3.2. Giới thiệu về giống Lactobacillus . 23
1.3.2.1 Giống Lactobacillus – các đặc tính của vi khuẩn probiotic 24
1.3.2.2.1 Khả năng sinh ra các chất kháng khuẩn và đối kháng với các vi
khuẩn gây bệnh 24
1.3.2.2.3 Khả năng chịu mặn . 25
1.3.2.2.4 Khả năng tồn tại trong đường tiêu hóa . 25
1.3.2.2. Các yếu tố ảnh hưởng tới sự phát triển của vi khuẩn lactic nói chung và
Lactobacillus nói riêng. 26
1.3.2.1.1. Ảnh hưởng của các chất dinh dưỡng . 26
13.2.2.2. Ảnh hưởng của các điều kiện nuôi cấy . 29
1.3.3. Tình hình nghiên cứu sử dụng Lactobacillus bổ sung vào chế phẩm probiotic
trong nuôi trồng thủy sản . 30
Chương 2: ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU . 33
2.1. Đối tượng nghiên cứu . 33
2.1.1. Mẫu cá . 33
2.1.2. Môi trường nghiên cứu . 33
2. 2. Nội dung nghiên cứu . 35
Hình 2.1:Sơ đồ cách tiếp cận các nội dung nghiên cứu của đề tài . 35
2. 3. Phương pháp nghiên cứu 36
2.3.1. Phương pháp phân lập, tuyển chọn 36
2.3.1.1. Phân lập Lactobacillus . 36
2.3.1.2. Nuôi cấy và bảo quản các chủng Lactobacillus . 36
2.3.1.3. Tuyển chọn các chủng Lactobacillus kháng Vibrio 37
2.3.2. Quan sát đặc điểm hình thái và đặc tính sinh hóa . 38
2.3.2.1. Quan sát đặc điểm hình thái . 38
2.3.2.1.1. Quan sát tế bào vi khuẩn bằng kính hiển vi . 38
2.3.2.1.2. Nhuộm Gram . 38
2.3.2.2. Quan sát đặc tính sinh hóa 39
2.3.2.2.1. Khả năng sinh acid lactic 39
2.3.2.2.2. Phản ứng catalase 40
2.3.2.2.3. Khả năng di động 40
2.3.2.2.4. Khả năng sử dụng các loại đường: 41
2.3.3. Xác định các điều kiện nuôi cấy 41
2.3.3.1. Xác định khả năng sinh trưởng 41
2.3.3.2. Xác định nhiệt độ thích hợp 42
2.3.3.3. Xác định thời gian nuôi cấy 42
2.3.3.4. Xác định pH thích hợp 42
2.3.4. Xác định các đặc tính probiotic . 42
2.3.4.1. Xác định khả năng sinh enzyme tiêu hóa 42
2.3.4.2. Xác định khả năng chịu mặn 43
Chương 3: KẾT QUẢ VÀ THẢO LUẬN . 44
3.1. Kết quả phân lập tuyển chọn 44
3.1.1. Phân lập Lactobacillus từ nội tạng cá chim vây vàng 44
3.1.2. Kết quả tuyển chọn các chủng Lactobacillus có hoạt tính kháng Vibrio . 44
3.2. Đặc điểm hình thái và đặc điểm sinh hóa 46
3.2.1. Đặc điểm hình thái 46
3.2.1.1. Đặc điểm hình thái của chủng L1.2 46
3.2.1.2. Đặc điểm hình thái của chủng L1.3 48
3.2.2. Đặc điểm sinh hóa . 51
3.3. Đặc tính nuôi cấy và đặc tính probiotic . 52
3.3.1. Đường cong sinh trưởng của chủng L1.2 và L1.3 52
3.3.2 Ảnh hưởng của nhiệt độ đến sự phát triển của 2 chủng L1.2 và L1.3 54
3.3.3. Thời gian nuôi cấy . 55
3.3.4. pH nuôi cấy 56
3.3.5. Khả năng chịu mặn của hai chủng L1.2 và L1.3 57
KẾT LUẬN VÀ KIẾN NGHỊ 59
Kết luận 59
Kiến nghị 59
TÀI LIỆU THAM KHẢO 60
74 trang |
Chia sẻ: lvcdongnoi | Lượt xem: 4363 | Lượt tải: 2
Bạn đang xem trước 20 trang tài liệu Phân lập, tuyển chọn và đánh giá một số đặc tính của một số chủng lactobacillus trên cá chim vây vàng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ng, không có độc tố, cho hiệu suất thu hồi là
lớn nhất và giá thành rẻ (Lương Đức Phẩm, 2004). Mỗi nguồn dinh dưỡng cung cấp
không chỉ ảnh hưởng đến sự phát triển của vi khuẩn trong quá trình nuôi cấy mà còn
ảnh hưởng không nhỏ đến quá trình thu hồi và bảo quản chế phẩm sinh khối sau này.
• Ảnh hưởng của nguồn cacbon
Cacbon là thành tố chính trong các hợp chất hữu cơ xây dựng lên cơ thể của mọi
loài sinh vật. Vì vậy sự chuyển hoá nguồn dinh dưỡng cacbon thành các chất cần thiết
cho tế bào vi sinh vật chiếm vị trí hàng đầu trong quá trình dinh dưỡng của tế bào vi
sinh vật.
Vi khuẩn lactic sử dụng được rất nhiều loại hydratcacbon, từ các hexose
(glucose, fructose, manose, galactose), các đường đôi (saccarose, lactose, maltose) cho
đến các polysaccarit (tinh bột, dextrin).
+ Glucose ở dạng D- glucose, là loại monosaccarit hấp thụ dễ dàng nhất. Chúng
được vi sinh vật sử dụng đầu tiên rồi mới đến các loại khó chuyển hoá hơn. Vì vậy
trong quá trình sản xuất người ta thường đưa về loại đường này cho vi sinh vật dễ sử
dụng.
+ Lactose là disaccarit, nó là đường có trong sữa người và động vật. Một số
chủng vi khuẩn lactic có khả năng sử dụng lactose làm thức ăn vì chúng có khả năng
sinh enzym β-galactosidase. Enzym này thuỷ phân lactose thành glucose và galactose,
giúp cho quá trình trao đổi chất của vi khuẩn được dễ dàng hơn.
+ Sucrose cũng là một disaccarit. Trong quá trình lên men dưới tác dụng của
enzym sucrose hydrolase bị thuỷ phân thành glucose và fructose. Vài loài lactococci,
saccarose được vận chuyển bởi hệ enzym sucrose phosphotransferase và một enzym
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
27
đặc hiệu sucrose-6-phosphate hydrolase phân cắt sucrose-6-phosphate thành glucose-6-
phosphate và fructose. Những enzym này chỉ được tiết ra khi xuất hiện sucrose trong
môi trường (Thompson và Chassy, 1981).
+ Maltodextrin là sản phẩm trung gian khi thuỷ phân tinh bột thành đường, có 3-
20 chuỗi. Những chuỗi này được tạo bởi vài gốc dextroza liên kết với nhau bởi liên kết
hidro yếu.
Nguồn năng lượng quan trọng nhất cho vi khuẩn lactic là monosaccrit và
disaccarit. Các nguồn cacbon này được dùng để cung cấp năng lượng, xây dựng cấu
trúc tế bào và sinh ra các axit hữu cơ như axit citric, malic, pyruvic, fumaric, axetic…
Một vài loài vi khuẩn lactic lên men dị hình phân lập từ các sản phẩm thực phẩm, có
thể sử dụng các axit gluconic và galacturonic tạo thành CO2, axit axetic và axit lactic.
Trong quá trình lên men các cơ chất chứa cacbon, vi khuẩn lactic có thể sử dụng cả các
axit amin như axit glutamic, arginin, tirozin làm nguồn cung cấp năng lượng. Khi đó
tạo ra quá trình đề cacboxyl và tạo ra CO2. Các loại vi khuẩn khác nhau thì đòi hỏi
nguồn cacbon khác nhau. Một số loài vi khuẩn lactic có thể sử dụng được dextrin và
tinh bột (William và Wilkins, 1986). Sự phát triển của vi khuẩn lactic với mỗi loại
đường khác nhau sẽ tạo ra các tế bào có đặc điểm hình thái và sinh lý khác nhau và vì
vậy cũng sẽ có khả năng chống chịu khác nhau trước những áp lực của các quá trình xử
lý sau này. Nhóm các nhà khoa học của Carcalho đã khẳng định rằng khả năng sống
sót của L. bulgaricus trong và sau sấy đông khô phụ thuộc vào loại đường được bổ
sung trong quá trình nuôi cấy và thu hồi chế phẩm, nếu lên men từ manose thì tỷ lệ tế
bào chết nhiều hơn hẳn so với lên men từ fructose và lactose (Carvalho và cộng sư,
2004). Tuy nhiên, việc lựa chọn loại đường nào cũng cần quan tâm đến vấn đề kinh tế
nhằm giảm thiểu chi phí đầu vào.
• Ảnh hưởng của nguồn nitơ
Nitơ cũng là một nguyên tố cần thiết cho sự sống của tất cả sinh vật. Vật chất cơ
bản của tế bào (protein, axit nucleic…) đều chứa nitơ, vì vậy nitơ đóng vai trò hết sức
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
28
quan trọng trong quá trình sinh trưởng và phát triển của vi khuẩn. Vi khuẩn lactic đòi
hỏi rất nhiều axit amin khác nhau do đó chúng cần môi trường có sẵn nguồn nitơ nhằm
đảm bảo sự phát triển của mình. Axit amin có thể được đồng hoá dưới dạng peptit nhờ
vào tác dụng của enzym protease ngoại bào hay nội bào.
Mỗi loài vi khuẩn khác nhau lại có nhu cầu về nguồn nitơ khác nhau. Phần lớn
vi khuẩn lactic không thể sinh tổng hợp được các chất hữu cơ phức tạp có chứa nitơ
nên chúng đòi hỏi nguồn nitơ có sẵn trong môi trường. Chỉ có một số ít loài vi khuẩn
lactic có khả năng sinh tổng hợp các hợp chất hữu cơ từ nguồn nitơ vô cơ như L.
helveticus, chúng có thể bị kích thích bởi sự có mặt của muối amoni trong môi trường
(Chopin, 1993).
Để sinh trưởng và phát triển bình thường, ngoài nitơ dưới dạng hỗn hợp các axit
amin, vi khuẩn lactic còn cần những hợp chất hữu cơ chứa nitơ như các sản phẩm thuỷ
phân protein từ lactanbumin, casein, pepton, peptit, dịch nấm men thuỷ phân, dịch
chiết thịt, trypton…Đây cũng là nguồn nitơ thường xuyên được sử dụng để chuẩn bị
môi trường nuôi cấy. Tuy nhiên ở quy mô công nghiệp ta cần nghiên cứu những nguồn
nitơ thích hợp để sản xuất giúp giảm giá thành sản phẩm mà nâng cao được hiệu quả
sản xuất. Trong đó dịch nấm men thuỷ phân được sử dụng khá nhiều (Lars Axelsson,
2004).
• Ảnh hưởng của các muối vô cơ và chất kích thích sinh trưởng
Các muối vô cơ và các chất khoáng chỉ với lượng rất nhỏ nhưng lại có ảnh
hưởng rất lớn đến sự sinh trưởng và phát triển của vi khuẩn. Chẳng hạn đối với
Lactobacillus Mn2+, Mg2+, Fe2+ làm tăng cường sự phát triển của vi khuẩn lactic, hay
Ca2+ tham gia vào cấu trúc enzym protease thuỷ phân một số protein là nguồn dinh
dưỡng nuôi tế bào. Nhìn chung mangan và magie là những chất đóng các vai trò chủ
yếu sau:
+ Tham gia cấu trúc và đảm bảo chức năng hoạt động của enzym.
+ Giải độc cho tế bào khỏi sự có mặt của oxy.
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
29
+ Ổn định cấu trúc tế bào.
Mg2+ là chất hoạt động trong quá trình lên men lactic bằng cách giúp vi khuẩn
lactic sử dụng tốt hơn các loại đường. Carvalho và cộng sự đã nhận thấy là khi bổ sung
NaCl và saccarose vào môi trường MRS khi nuôi cấy L. bulgaricus đem lại những kết
quả khác nhau trong quá trình tạo sinh khối và tỷ lệ sống sót của tế bào trong khi sấy
và bảo quản sau này (Carvalho và cộng sự, 2004).
Các chất chứa axit béo có mặt trong môi trường cũng có ảnh hưởng không nhỏ
đến quá trình sinh trưởng và phát triển của vi khuẩn. Chúng không những kích thích
sinh trưởng mà còn đóng vai trò trong quá trình lạnh đông sau này. Ví dụ Tween 80 sẽ
làm thay đổi một số axit béo trong tế bào vi khuẩn lactic, sự thay đổi này ảnh hưởng
đến khả năng chịu lạnh và khả năng chống chịu muối mặn của vi khuẩn lactic (Ho Phu
Ha và Michelle Cartherine Adams, 2007).
13.2.2.2. Ảnh hưởng của các điều kiện nuôi cấy
• Ảnh hưởng của tỷ lệ tiếp giống
Tỷ lệ tiếp giống có ảnh hưởng không nhỏ đến sự phát triển của vi khuẩn. Tỷ lệ
tiếp giống quá thấp sẽ kéo dài thời gian nuôi cấy, dễ nhiễm tạp, hiệu suất thu hồi sinh
khối thấp. Tỷ lệ tiếp giống quá cao, mặc dù thời gian nuôi cấy rút ngắn nhưng hàm
lượng sinh khối không cao do vi khuẩn phát triển nhanh quá làm nguồn làm thức ăn
nhanh chóng cạn kiệt, và chúng sinh ra một số sản phẩm gây ức chế quá trình sinh
trưởng. Vì vậy chọn tỷ lệ tiếp giống thích hợp sẽ tiết kiệm canh trường giống, đảm bảo
quá trình lên men hiệu quả, rút ngắn thời gian lên men.
• Ảnh hưởng của pH
Trong quá trình lên men, vi khuẩn lactic sinh axit làm pH môi trường giảm, khi
pH môi trường giảm đến một mức nào đó nó sẽ ức chế chính sự phát triển của vi khuẩn
lactic. Vì vậy trong quá trình nuôi người ta phải luôn điều chỉnh pH về khoảng tối thích
cho vi khuẩn phát triển. Mỗi một loài vi khuẩn lactic có một khoảng pH tối thích khác
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
30
nhau, dao động trong khoảng 4,5-6,5, nhưng cũng có một số chủng có thể phát triển ở
pH=9,6 và một số hoạt động ở pH=3,2 như Lactobacillus fermentum có thể chịu được
pH=3. Theo Giraud và cộng sự đối với vi khuẩn L. plantarum A6, sự giảm pH sẽ làm
giảm sự chuyển hoá cơ chất. Ngoài ra Silva và cộng sự đã tìm ra mối liên hệ giữa pH
cuối cùng của môi trường nuôi cấy chủng L. bulgaricus liên quan đến quá trình sấy
phun và bảo quản khô sau này. Họ nhận định được tế bào sẽ chịu được quá trình xử lý
nhiệt độ tốt hơn nếu trong quá trình nuôi cấy không điều chỉnh pH (Lars Axelsson,
2004).
• Ảnh hưởng của nhiệt độ
Nhiệt độ ảnh hưởng trực tiếp đến quá trình sinh trưởng và phát triển của vi
khuẩn. Nhiệt độ ảnh hưởng đến các phản ứng enzym của tế bài vi sinh vật. Nhiệt độ
nuôi cấy quá cao hay quá thấp đều có thể gây ức chế các enzyme, làm đình trệ các
phản ứng trao đổi chất và do đó ảnh hưởng đến quá trình sinh trưởng và phát triển của
vi khuẩn. Ví dụ: vi khuẩn Lactobacillus fermentum là loài ưa ấm, phát triển tốt ở nhiệt
độ cơ thể người 37oC.
1.3.3. Tình hình nghiên cứu sử dụng Lactobacillus bổ sung vào chế phẩm probiotic
trong nuôi trồng thủy sản
Những nghiên cứu ở nước ngoài:
Ở một số nước Châu Âu, nhiều chủng Lactobacillus đã được lựa chọn để làm
chế phẩm vi sinh trong nuôi cá. Trong một nghiên cứu của Nikoskelainen và cộng sự
(2001) đã cho thấy khả năng giảm tỷ lệ chết của cá hồi của hai chủng Lactobacillus
rhamnosus và Lactobacillus bulgaricus với liều lượng bổ sung vào thức ăn của cá là
1012 CFU/g .
Bên cạnh đó, Carnevali và cộng sự (2004) đã cho thấy khả năng cải thiện sức
khỏe của cá tráp biển khi bổ sung Lactobacillus plantarum với nồng độ 104 CFU/g
(Carnevali và cs, 2004).
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
31
Ở Ấn Độ, theo nghiên cứu của Mohanty và cộng sự (1996) cho thấy chế phẩm
vi sinh sử dụng Lactobacillus và nấm men Saccharomyces cerevisiae có khả năng kích
thích sự tăng trưởng của cá chép. Ở Thái Lan, Jiravanichpaisal và cộng sự (1997) đã sử
dụng Lactobacillus trong nuôi tôm sú (P.momodon Fabrius) và giảm được tỷ lệ tôm
chết do dịch bệnh gây ra bởi nhóm vibrio và bệnh đốm trắng.
Ngoài ra có rất nhiều chế phẩm sử dụng Lactobacillus như BZT® AQUA, BZT®
DIGESTER (Bio-Form,L.L.C.,Tulsa,Oklahoma,USA); Aqua Ron (International
Biologicals, Ấn Độ); EPICIN-Pond (Epicore BioNetworks Inc - USA )…. Các chế
phẩm này có tác dụng làm ổn định chất lượng nước và nền đáy trong ao nuôi tôm cá;
nâng cao sức khoẻ và sức đề kháng tôm cá nuôi; giảm thiểu ô nhiễm môi trường ao
nuôi và xung quanh do nuôi trồng thuỷ sản gây nên; nâng cao hiệu quả sử dụng thức ăn
của thủy sản.
Những nghiên cứu trong nước:
Ở Việt Nam, những nghiên cứu về việc sử dụng các chế phẩm vi sinh và
Lactobacillus . spp vào chế phẩm để cải thiện môi trường nuôi thủy sản nói chung và
nuôi tôm nói riêng còn tương đối ít (Nguyễn Hữu Phúc và Nguyễn Văn Hảo, 1998)
Theo Vũ Thị Thứ và cộng sự, (2004) thử nghiệm men vi sinh Biochie để xử lý nước
nuôi tôm sú giống và tôm thịt tại Đồ Sơn, Hải Phòng và Hà Nội cho kết quả khá tốt
thông qua môi trường được cải thiện, đặc biệt rất có hiệu quả đối với nuôi tôm giống
như giảm chu kỳ thay nước và giảm mùi hôi, tăng tỷ lệ sống và tăng trưởng của tôm.
Mô hình nuôi tôm sú bằng chế phẩm vi sinh (ES-01 và BS-01 của Trung tâm
nghiên cứu ứng dụng sinh học phục vụ nuôi trồng thủy sản Sóc Trăng) góp phần đưa
năng suất tôm nuôi nhiều trang trại đạt tới 12 tấn/ha/vụ. Nhiều hộ nuôi tôm có xử lý
chế phẩm vi sinh cho thấy môi trường nước luôn ổn định, tôm phát triển nhanh khắc
phục được nhiều khó khăn về thời tiết, môi trường, chi phí đầu tư, dịch bệnh. Ở Cà
Mau, việc áp dụng mô hình nuôi tôm bằng chế phẩm EM.ZEO bước đầu mang lại hiệu
quả khả quan, giữ cho môi trường của ao luôn sạch, tôm khoẻ mạnh mà hoàn toàn
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
32
không sử dụng các loại hoá chất độc hại, kháng sinh. Trong suốt quá trình nuôi, tôm
phát triển tốt và không bị nhiễm bệnh (
Nghiên cứu của Đặng Thị Hoàng Oanh và cộng sự, (2000) tìm hiểu tác dụng của
men vi sinh Bio-dream lên các yếu tố vô sinh và hữu sinh trong ương nuôi ấu trùng
tôm càng xanh với liều lượng 1g/m3 và cho thấy hiệu quả tích cực trong việc giảm mật
độ Vibrio tổng số và ổn định được môi trường nước.
Nghiên cứu của Nguyễn Thanh Phương (2007) sử dụng 3 loại men vi sinh
Ecomarine, Bio-dream, BZT trong ương nuôi ấu trùng tôm càng xanh theo mô hình
nước xanh cải tiến, cho thấy các yếu tố môi trường phù hợp cho sự phát triển của ấu
trùng, men vi sinh góp phần hạn chế số lượng vi khuẩn Vibrio spp trong môi trường bể
ương, với tỷ lệ sống của ương ấu trùng tôm càng xanh khá cao, dao động từ 59,1-
76,6%.
Các chế phẩm vi sinh như Biochie ES-01 và BS-01 EM.ZEO Bio-dream
Ecomarine, BZT đều chưa hai chủng vi sinh chủ yếu là Bacillus .spp và Lactobacillus
spp. Ngoài ra ở nước ta còn nhiều chế phẩm vi sinh khác sử dụng Lactobacillus
acidophilus, Lactobacillus prorogenes, Lactobacillus plantarum như TP- 05- Super;
ZeoBac BIO- ZEOGREEN EMUNIV.S Biosure…
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
33
Chương 2: ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU
2.1. Đối tượng nghiên cứu
2.1.1. Mẫu cá
Chúng tôi sử dụng các mẫu cá vây vàng (Trachinotus blochii Lacepede, 1801)
khỏe, đã trải qua một số dịch bệnh. Cá chim được lấy về từ trại cá Trường Đại học Nha
Trang (Vũng Ngán – Nha Trang – Khánh Hòa). Mẫu để phân lập là toàn bộ ruột cá.
2.1.2. Môi trường nghiên cứu
+ Alkaline Peptone Water (APW):
Peptone
NaCl
Nước cất
10g
10g
1 lít
Điều chỉnh pH môi trường đạt 8,5 ± 0,2. Hấp ở 1210C trong 10 phút.
+ MRS:
Casein peptone, tryptic digest 10, cao thịt - 10, cao nấm men - 5,
glucose -20. Tween 80, K2HPO4 - 2, Na-acetate - 5, (NH4)2 citrate - 2.00,
MgSO4 . 7 H2O - 0.20, MnSO4 . H2O - 0.05, nước 1000 ml, pH to 6.2 - 6.8.
Khử trùng 1210C trong 15 phút.
Điều chỉnh pH môi trường đạt 7,5, sau đó thêm agar vào. Hấp khử trùng ở
121oC trong 15 phút.
+ Thiosunfate Citrate Bile Salts Sucrose (TCBS):
Cao nấm men
Peptone
Sucrose=
Sodium thiosulfate.75H2O
Sodium citrate.72H2O
Sodium cholate
5g
10g
20g
10g
10g
3g
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
34
Oxgall
NaCl
Ferric citrate
Bromothymol blue
Thymol blue
Agar
Nước cất
5g
10g
1g
0,04g
0,04g
15g
1 lít
Cho các chất vào nước cất đã làm ấm và đun nóng để hòa tan. Chỉ để vừa sôi rồi
nhấc ra ngay. Không hấp khử trùng. Để nguội đến 50oC rồi đổ đĩa.
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
35
2. 2. Nội dung nghiên cứu
Quy trình nghiên cứu được sơ đồ hóa trong hình 2.1
Hình 2.1:Sơ đồ cách tiếp cận các nội dung nghiên cứu của đề tài
Khả năng chịu mặn
Khả năng sinh axit
lactic
Phân lập
Lactobacillus
Mẫu nội tạng cá chim vây vàng
Khả năng di động,
phản ứng catalase
Khả năng lên men
đường
Tuyển chọn các chủng Lactobacillus
có hoạt tính kháng Vibrio spp.
Xác định đặc tính sinh lý –
sinh hóa
Xác định các đặc tính
probiotic và điều kiện
nuôi cấy thích hợp
Kết luận
Hình thái khuẩn
lạc
Soi tươi
Nhuộm Gram
Nhiệt độ
pH
Thời gian
Khả năng sinh
enzyme amylase,
protease
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
36
2. 3. Phương pháp nghiên cứu
2.3.1. Phương pháp phân lập, tuyển chọn
2.3.1.1. Phân lập Lactobacillus
Phân lập các chủng Lactobacillus trên nội tạng của cá chim vây vàng trên môi
trường MRS.
Cân 5g mẫu nội tạng của cá chim vây vàng cho vào túi nilon, bổ sung 45 ml
canh thang tăng sinh để có độ pha loãng 10-1, đồng nhất bằng máy dập mẫu Stomacher
trong 1 phút. Sau đó cho vào bình tam giác và ủ qua đêm ở nhiệt độ phòng. Sau 24h
đem pha loãng thành các nồng độ 10-2 đến 10-7. Hút 0,1 ml mẫu (Trần Linh Thước,
2008) từ ba nồng độ 10-5, 10-6, 10-7 cho vào môi trường thạch dinh dưỡng đã chuẩn bị
trong các đĩa petri vô trùng và dùng que cấy trang đều lên bề mặt đĩa thạch. Các thao
tác pha loãng, đổ đĩa thạch và cấy mẫu được làm trong tủ cấy vô trùng. Sau đó để các
đĩa petri đã cấy mẫu vào tủ ấm 370C trong 1 – 2 ngày. Quan sát hình thái, màu sắc
khuẩn lạc để lựa chọn sơ bộ các loài thuộc chi Lactobacillus . Chúng được tách ra cấy
ria nhiều lần để chọn các dòng thuần chủng, sau đó cấy chuyển vào môi trường thạch
nghiêng trong ống nghiệm để giữ giống (Lương Đức Phẩm, 1998).
2.3.1.2. Nuôi cấy và bảo quản các chủng Lactobacillus
Trong sản suất, nghiên cứu, việc hoạt hoá giống và thường xuyên kiểm tra chất
lượng của giống là hết sức cần thiết. Để hoạt hóa giống người ta thường sử dụng môi
trường nuôi cấy giàu các chất kích thích sinh trưởng như: cao nấm men, nước chiết cà
chua, hỗn hợp vitamin, axit béo,… Vì vậy việc chon phương pháp giữ giống có vai trò
quan trọng trong duy trì được những hoạt tính ưu việt của chúng, chống thoái hoá
giống và không làm mất hoạt tính. Quá trình tiến hành giữ giống:
- Sau khi phân lập được nhiều chủng Lactobacillus chúng tôi sẽ tiến hành giữ
giống trên môi trường thạch nghiêng: chọn các đĩa petri có chứa khuẩn lạc thuần
chủng, dùng que cấy ria chọn lấy các khuẩn lạc và cấy ria trên môi trường agar MRS
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
37
trong các ống thạch nghiêng đã được chuẩn bị trước. Các ống được bảo quản ở nhiệt độ
4 – 6oC. Định kỳ cấy truyền giống, 2 – 3 tháng cấy truyền lại một lần.
- Sau khi xác định được các đặc tính probiotic của các chủng vừa phân lập
được, chúng ta sẽ tiến hành giữ giống trong môi trường MRS lỏng có chứa từ 30 – 50
% glycerol về thể tích: Các chủng Lactobacillus sau khi đã tuyển chọn sẽ được nuôi
cấy ở môi trường MRS lỏng, ở 28 -300C, lắc 180 vòng/phút cho đến khi đạt đến thời
gian ở giữa pha Logarit của đường cong sinh trưởng . Hút dịch nuôi cấy cho vào ống
eppendoff có chứa glycerol với tỷ lệ từ 30 – 50 % thể tích của ống, votex các ống đã
hút, cho vào tủ lạnh ở 4 -6 0C khoảng 30 phút trước khi đem bảo quản ở tủ đông sâu –
700C. Phương pháp bảo quản trong glycerol này cho phép chúng ta có thể giữ giống
trong thời gian dài từ 6 tháng đến 1 năm.
2.3.1.3. Tuyển chọn các chủng Lactobacillus kháng Vibrio
Các chủng Vibrio được sử dụng được lấy từ bộ sưu tập của phòng thí nghiệm và
phân lập từ trên đối tượng cá chim vây vàng.
Từ môi trường giữ giống, các chủng Lactobacillus và Vibrio được đưa vào môi
trường lỏng tương ứng (Lactobacillus nuôi trên môi trường MRS, Vibrio nuôi trên môi
trường APW) và nuôi hoạt hóa qua đêm ở 370C. Khi mật độ tế bào của Vibrio đạt
khoảng 104 CFU ml-1 và mật độ tế bào Lactobacillus đạt khoảng 105 CFU ml-1 thì
Vibrio được trang đều trên bề mặt đĩa thạch chứa môi trường LB đã chuẩn bị sẵn (Ravi
và cs, 2007). Sau đó đục các lỗ thạch đường kính khoảng 5 mm, hút 50 µl dịch nuôi
cấy các chủng Lactobacillus cho vào các lỗ khoan (Sarker và cs, 2008). Đem các đĩa đã
cấy vào tủ ấm 370C, sau 1 – 2 ngày quan sát các vòng kháng khuẩn và xác định đường
kính của nó.
Để chọn lựa được các chủng Lactobacillus kháng lại Vibrio có độ tin cây cao
thì chúng ta tiến hành qua 2 – 3 vòng thử đối kháng. Vòng 1 tiến hành thử đối kháng
tất cả các chủng Lactobacillus với 2 -3 chủng vibrio để tuyển chọn sơ bộ được các
chủng có khẳ năng kháng. Tiếp theo sử dụng các chủng đã tuyển chọn lần 1 để thử khả
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
38
năng đối kháng với 3-4 chủng vibrio, từ đó chọn ra các chủng có hoạt tính kháng mạnh
để làm các bước tiếp theo.
2.3.2. Quan sát đặc điểm hình thái và đặc tính sinh hóa
2.3.2.1. Quan sát đặc điểm hình thái
2.3.2.1.1. Quan sát tế bào vi khuẩn bằng kính hiển vi
- Chuẩn bị mẫu tế bào vi khuẩn.
Các chủng Lactobacillus lựa chọn được nuôi cấy trên môi trường MRS, lắc với
tốc độ 200 vòng/phút, ở nhiệt độ 28 – 30 0C. Sau 24h nuôi cấy, canh trường được thu
nhận để làm tiêu bản quan sát tế bào vi khuẩn (ở trạng thái sống và nhuộm Gram).
- Chuẩn bị tiêu bản
Phiến kính (lame) và lá kính (lamelle) được rửa sạch với xà bông, làm khô và
ngâm trong cồn 950. Tạo tiêu bản giọt ép - quan sát vi sinh vật ở trạng thái sống: nhỏ 1
giọt canh trường vi sinh vật lên phiến kính. Đặt lá kính lên giọt nước (cẩn thận để
không tạo bọt nước bằng cách nghiêng lá kính một góc 450 và từ từ hạ xuống).
- Soi kính hiển vi
Trường hợp quan sát vi sinh vật ở trạng thái sống (sử dụng vật kính 10X và
40X): đặt tiêu bản lên bàn mẫu. Hạ tụ quang, đóng bớt chắn sáng. Chọn vật kính 10X,
dùng nút chỉnh thô nâng bàn mẫu sao cho vật kính tiếp xúc với phiến kính. Chỉnh từ từ
theo chiều ngược lại cho đến khi thấy ảnh vi sinh vật trong thị trường. Dùng bộ phận di
chuyển bàn mẫu sao cho vùng muốn quan sát nằm giữa thị trường. Chuyển sang vật
kính 40X, điều chỉnh nút chỉnh tinh để tìm ảnh.
2.3.2.1.2. Nhuộm Gram
Vi khuẩn Lactic Gram (+), có hình trực khuẩn ngắn hoặc dài, dạng đơn, đôi
hoặc xếp thành chuỗi. Ngoài ra vi khuẩn Lactic còn có hình cầu hoặc cầu trực khuẩn,
dạng đơn, đôi, đám hoặc xếp thành chuỗi.
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
39
Tiến hành:
• Bước 1: Cho một giọt canh trường chứa vi khuẩn lên phiến kính sạch, dàn đều
và để khô tự nhiên hoặc hơ qua trên ngọn lửa đèn cồn (tránh không cho ngọn lửa trực
tiếp trên vết mẫu).
• Bước 2: Nhỏ một giọt chất nhuộm Violet lên vết mẫu đã được cố định trong
vòng 1 phút, rồi rửa lại bằng nước cất.
• Bước 3: Nhỏ một giọt dịch cắm màu lugol lên vết mẫu trong vòng 30 giây đến
1 phút, sau đó rửa bằng nước cất.
• Bước 4: Dùng cồn 950 tia qua lại trên vết mẫu và phiến kính đến khi hết màu
(khoảng 15 giây), sau đó rửa ngay bằng nước cất.
• Bước 5: Nhỏ một giọt chất màu fucshin lên vết mẫu trong khoảng 1 phút, sau
đó rửa bằng nước cất. Dùng giấy thấm khô và đem mẫu đi quan sát dưới kính hiển vi
vật kính dầu.
Sử dụng vật kính 100X, đặt tiêu bản đã nhuộm Gram lên bàn mẫu và nhỏ một
giọt dầu lên vết nhuộm. Nâng tụ quang, mở chắn sáng. Nhìn vào mẫu (từ ngoài) và hạ
từ từ vật kính 100X sao cho đầu vật kính chìm trong giọt dầu. Nhìn vào thị kính, dùng
nút chỉnh thô điều chỉnh đến khi thoáng nhìn thấy ảnh thì dừng lại. Sau đó, dùng nút
chỉnh tinh cho đến khi nhìn thấy ảnh rõ nét.
2.3.2.2. Quan sát đặc tính sinh hóa
2.3.2.2.1. Khả năng sinh acid lactic
• Phương pháp định tính: có 2 cách
Nuôi vi khuẩn trong hộp petri trên môi trường MRS có bổ sung CaCO3 với lượng
10 g/l. Khi khuẩn lạc mọc, nếu chủng có sinh axit lactic thì xung quanh khuẩn lạc có
vòng phân giải. Ngược lại là chủng không sinh axit lactic.
Cho vào mỗi ống nghiệm 0,5 ml phenol, thêm từ từ từng giọt FeCl3 1% cho đến
khi dung dịch có màu tím của phức phenol-sắt. Sau đó, cho vào dịch nghiên cứu. Nếu
màu tím chuyển thành màu vàng thì trong dịch nuôi có mặt axit lactic.
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
40
2.3.2.2.2. Phản ứng catalase
- Nguyên tắc: Nhằm xác định sự có mặt của men catalase.
- Cơ sở sinh hóa: Do oxy có thể tạo ra hàng loạt những dẫn xuất mang tính độc
đối với vi sinh vật, không có gì ngạc nhiên là vi sinh vật cũng có thể tự “giải độc” bằng
cách tạo ra những men có khả năng phá hủy một số sản phẩm chứa oxy như vậy. Điển
hình của loại men này là catalase. Men catalase có ở hầu hết các vi sinh vật hiếu khí và
kỵ khí tùy tiện chứa cytochrome.
- Phương pháp thử: Thử trên lam: Dùng que cấy lấy tâm khuẩn lạc thuần đã
nuôi trên môi trường MRS đặc đặt lên lam kính sạch. Nhỏ một giọt H2O2 30% lên
khuẩn lạc nằm trên lam kính. Nếu thấy các bọt khí xuất hiện chứng tỏ có enzym
catalase trong tế bào.
- Lưu ý:
+ Khi thử nghiệm trên lam không được đảo trộn trình tự tiến hành (
không đưa H2O2 lên lam kính trước vi sinh vật) bởi cả sắt lẫn platinum co trong
que cấy đều có thể gây phản ứng dương tính giả.
+ Nên dùng các khuẩn lạc đã nuôi trong thời gian 18 – 24 giờ vì những
khuẩn lạc già hơn có thể gây mất hoạt tính catalase và gây phản ứng âm tính giả.
+ H2O2 30% rất không bền và dễ bị phân hủy dưới tác dụng của ánh sáng
nên cần giữ lạnh dung dịch và cần kiểm tra hoạt tính trước khi dùng.
2.3.2.2.3. Khả năng di động
Chủng Lactobacillus được cấy đâm sâu trong môi trường thạch đứng. Chuẩn bị
các ống nghiệm chứa môi trường MRS đặc, cao 5 - 6cm. Dùng que cấy đầu nhọn chấm
vào dịch nuôi rồi đâm sâu thẳng xuống ống thạch đứng chứa môi trường MRS rắn.
Nuôi ở 30 – 350C trong 2 ngày đem ra quan sát.
Nếu vi khuẩn mọc dọc theo vết cấy và mọc lan ra xung quanh, chứng tỏ chủng có
khả năng di động.
Vi khuẩn chỉ mọc dọc theo vết cấy chứng tỏ chủng không có khả năng di động và
hô hấp tuỳ tiện.
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
41
Vi khuẩn mọc trên bề mặt ống thạch chứng tỏ chủng hô hấp hiếu khí.
2.3.2.2.4. Khả năng sử dụng các loại đường:
Sử dụng môi trường cơ bản gồm có:Cao thịt- 3 g; Pepton- 10 g; NaCl- 5 g;
phenol đỏ – 0,03g; thêm nước cất đến 1000 ml. Bổ sung đường với nồng độ 0,5% và
chỉnh pH đến 7,2 ± 0,2. Phân môi trường vào các ống nghiệm, mỗi ống 5ml. Đặt vào
mỗi ống nghiệm 1 ống nhỏ (ống Durham) lộn ngược đầu để hứng khí CO2 sinh ra nếu
vi khuẩn có khả năng lên men đường. Khử trùng trong 10 phút ở 121 0C. Đường
arabinose, xylose, và các đường kép cần khử trùng riêng bằng màng lọc rồi mới bổ
sung vào môi trường.
Cấy vi khuẩn mới hoạt hoá vào các ống nghiệm, đặt ở 36 0C, theo dõi hiện
tượng sinh axit sau 1-3 ngày. Nếu vi khuẩn có khả năng lên men đường (sinh axit) chất
chỉ thị sẽ chuyển màu vàng lục.
Các loại đường được kiểm tra là: glucose, lactose, mantose, manitol, saccarose,
sucrose.
2.3.3. Xác định các điều kiện nuôi cấy
2.3.3.1. Xác định khả năng sinh trưởng
Chủng Lactobacillus được nuôi cấy trên môi trường MRS lỏng ở 20 -300C, lắc
180 vòng/phút. Tiến hành lấy mẫu lúc đầu và sau 3h nuôi cấy để xây dụng đường cong
sinh trưởng bằng phương pháp đo độ đục (∆OD600).
Nguyên tắc: Khi pha lỏng có chứa nhiều phần tử không tan thì sẽ hình thành
một hệ huyền phù và có độ đục bởi các phần tử hiện diện trong môi trường lỏng cản
ánh sáng, làm phân tán chùm ánh sáng tới. Tế bào vi sinh vật là một thực thể nên khi
hiện diện trong môi trường cũng làm môi trường trở nên đục. Giá trị OD (optical
density, mật độ quang) càng cao thì độ đục càng cao, chứng tỏ vi khuẩn sinh trưởng
càng mạnh. Vì vậy có thể xác định khả năng sinh trưởng của vi khuẩn thông qua đo độ
đục bằng máy so màu ở các bước sóng từ 500 – 610 nm.
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
42
Cách tiến hành: Đo độ đục của dịch nuôi cấy Lactobacillus bằng máy quang
phổ. Cho môi trường vào cuvet số 1 làm đối chứng, cho vào máy đo OD ở 600 nm, đưa
về giá trị bằng 0. Lấy dịch nuôi cấy Lactobacillus cho vào cuvet số 2 và cho vào máy
đo, đọc kết quả hiện trên màn hình.
2.3.3.2. Xác định nhiệt độ thích hợp
Chủng Lactobacillus được nuôi trên môi trường MRS lỏng. Lượng môi trường
chiếm 2/3 thể tích bình nuôi cấy, tỷ lệ tiếp giống 10 %. Tiến hành nuôi cấy hai chủng
Lactobacillus ở các mức nhiệt độ 300, 330, 370, 400. Cứ sau 12 giờ và 24 giờ nuôi cấy,
tiến hành đo pH và OD600 nm.
2.3.3.3. Xác định thời gian nuôi cấy
Sau khi chọn được nhiệt độ thích hợp cho từng chủng Lactobacillus ta tiến hành
thí nghiệm xác định thời gian nuôi cấy thu sinh khối tối ưu cho từng chủng. Thí
nghiệm được tiến hành trên môi trường MRS lỏng. Lượng môi trường chiếm khoảng
2/3 bình nuôi cấy, tỷ lệ tiếp giống 10%. Tiến hành đo pH và OD600 sau 0, 8, 12, 16, 18,
22, 26, 30, 34, 38, 42 giờ nuôi cấy.
2.3.3.4. Xác định pH thích hợp
Chủng Lactobacillus được nuôi trên môi trường MRS lỏng với lượng môi
trường khoảng 2/3 thể tích bình nuôi cấy. Chỉnh pH môi trường về ở các mức pH = 4,
5, 6, 7, 8 và cho 10 % giống vào nuôi cấy ở nhiệt độ và pH thích hợp đã được chọn.
Tiến hành đo pH và OD600 sau 0, 4, 8, 12, 16, 20, 24, 28, 32h nuôi cấy.
2.3.4. Xác định các đặc tính probiotic
2.3.4.1. Xác định khả năng sinh enzyme tiêu hóa
Lactobacillus được nuôi cấy trên môi trường MRS lỏng, lắc 180 vòng/phút, sau
16 – 24 h tiến hành thu dich lọc bằng phương pháp ly tâm ở tốc độ 8000 vòng/phút
trong 15 phút và xác định hoạt tính các enzyme theo phương pháp khuếch tán trên môi
trường thạch chứa cơ chất đặc trưng (casein với enzyme protease và tinh bột với
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
43
enzyme amylase. Chuẩn bị môi trường trong nước cất rồi phân phối vào đĩa peptri. Sau
khi thạch đông, khoét những lỗ nhỏ đường kính 0,5 cm trên mặt thạch, cho vào 0,1 ml
dung dịch lọc, giữ trong tủ ấm. Sau 24 h đổ lugol và đo đường kính phần môi trường
trong suốt không bắt màu với lugol. Biểu diễn hoạt tính tương đối của enzyme bằng số
mm đường kính vòng thủy phân.
Hoạt tính tương đối enzyme (H) xác định theo công thức: H = D – d (cm)
D: Đường kính vòng phân giải cộng đường kính lỗ khoan.
d: Đường kính lỗ khoan.
2.3.4.2. Xác định khả năng chịu mặn
Lactobacillus được nuôi cấy trên môi trường MRS lỏng ở các nồng độ muối
NaCl khác nhau, lắc ở 180 vòng/phút, 370C trong 24h. kiểm tra khả năng sống sót của
hai chủng Lactobacillus bằng giá trị OD600 nm.
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
44
Chương 3: KẾT QUẢ VÀ THẢO LUẬN
3.1. Kết quả phân lập tuyển chọn
3.1.1. Phân lập Lactobacillus từ nội tạng cá chim vây vàng
Các mẫu cá chim vây vàng được từ trại cá Trường Đại học Nha Trang tại Vũng
Ngán (Nha Trang – Khánh Hòa), chúng tôi đã phân lập và thuần khiết được 11 chủng
Lactobacillus. Phân lập và thuần khiết Lactobacillus đã được tiến hành trên môi trường
MRS, ở nhiệt độ 37oC. Các chủng Lactobacillus được đặt tên theo thứ tự L1.1, L1.2,
L1.3, L1.4, L1.5, L2.1, L2.2, L2.3, L2.4, L2.5, L2.6.
3.1.2. Kết quả tuyển chọn các chủng Lactobacillus có hoạt tính kháng Vibrio
Các chủng Lactobacillus được nuôi trên môi trường lỏng MRS, lắc với tốc độ
180 vòng/phút, ở nhiệt độ phòng (28-30oC). Các chủng Vibrio được tiến hành đồng
thời, nuôi trên môi trường APW, lắc 150 vòng/phút, ở nhiệt độ phòng (28-30oC). Tiến
hành thử hoạt tính kháng Vibrio của Lactobacillus sau khi các chủng Lactobacillus và
Vibrio đã được nuôi khoảng 18 – 22 giờ. Trang đều 0,1ml chủng Vibrio lên bề mặt đĩa
thạch MRS, đục các lỗ có đường kính 5 mm lên môi trường đã cấy Vibrio và cho 50 µl
dịch nuôi cấy các chủng Lactobacillus vào lỗ thạch. Các đĩa petri được ủ ở nhiệt độ
37oC trong tủ ấm.
Tính đối kháng của các chủng Lactobacillus được đánh giá thông qua kích
thước vòng kháng khuẩn (D – d, mm), trong đó D là đường kính vòng kháng khuẩn, d
là đường kính lỗ thạch. Sau 1 – 2 ngày nuôi cấy, các đĩa nuôi cấy được đem ra đọc kết
quả. Kết quả được thể hiện ở từ bảng 3.1 và hình 3.1:
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
45
0
5
10
15
20
25
L 1.2 L 1.3 L 1.4 L 1.5 L 2.2
Chủng Lactobacillus
H
oạ
t t
ín
h
kh
án
g
Vi
br
io
D
-
d
(m
m
)
V 2.1 V 2.2 V 2.3 V 2.4 C 1 C 7 C 23
Bảng 3.1: Hoạt tính kháng 7 chủng Vibrio của 5 chủng Lactobacillus trên
môi trường MRS, ở nhiệt độ 37oC
D – d (mm)
V 2.1 V 2.2 V 2.3 V 2.4 C 1 C 7 C 23
L 1.2 15 14 20 18 15 22 20
L 1.3 18 16 14 22 10 24 21
L 1.4 11.5 16 13 12 10 13.5 17
L 1.5 10 14.5 16.5 10 12 11 18.5
L 2.2 13 14 16 12.5 13 10 10.5
Hình 3.1: Khả năng đối kháng 7 chủng Vibrio (V 2.1, V 2.2, V 2.3, V 2.4, C1, C7
và C23) của 6 chủng Lactobacillus trên môi trường MRS, được xác định bằng
đường kính vòng kháng khuẩn (D-d) sau 1-2 ngày nuôi ở 37oC
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
46
Hình 3.2: Vòng kháng Vibrio của 2 chủng Lactobacillus lựa chọn sau 24h nuôi
cấy trên môi trường MRS, lắc 180 vòng/phút, ở nhiệt độ 28 - 30oC
. Kết quả từ bảng 3 cho thấy có 5 chủng Lactobacillus có hoạt tính kháng
Vibrio, chiếm 45,45%. Qua bảng 3, hình 3.1 và hình 3.2 cho thấy chủng Lactobacillus
L1.2 và L1.3 có khả năng kháng Vibrio mạnh nhất, thể hiện qua đường kính vòng
kháng khuẩn cao nhất. Từ kết quả trên chúng tôi chọn hai chủng L1.2 và L1.3 để làm
các nghiên cứu tiếp theo.
3.2. Đặc điểm hình thái và đặc điểm sinh hóa
3.2.1. Đặc điểm hình thái
3.2.1.1. Đặc điểm hình thái của chủng L1.2
Chủng L1.2 được cấy trang trên môi trường MRS bổ sung agar 2%, để trong tủ ấm
370C. Sau 24h nuôi, lấy đĩa petri ra quan sát hình thái khuẩn lạc.
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
47
Hình 3.3: Hình thái khuẩn lạc chủng L1.2 trên sau 24h trên môi trường MRS
nuôi ở 340C
Hình 3.4: Hình thái tế bào của chủng L1.2 khi soi tươi ở vật kính 100X
L1.2
L1.2
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
48
Hình 3.5: Hình ảnh nhuộm gram của chủng L1.2
Kết quả cho thấy: Chủng L1.2 có khuẩn lạc tròn, có đỉnh nhọn, màu trắng nhạt,
khuẩn lạc sau 24 h nuôi cấy có kích thước khoảng 2mm.
Khi làm tiêu bản soi tươi và nhuộm gram quan sát hình thái tế bào của chủng
L1.2, kết quả trên hình 3.4 và hình 3.5: tế bào có dạng hình cầu, đứng đơn, xếp chuỗi,
tụ thành đám. Tế bào bắt màu tím của thuốc nhuộm gram, điều đó chứng tỏ chủng LP2
là vi khuẩn gram dương.
3.2.1.2. Đặc điểm hình thái của chủng L1.3
Chủng L1.3 được cấy trang trên môi trường MRS bổ sung agar 2%, để trong tủ
ấm 370C. Sau 24h nuôi, lấy đĩa petri ra quan sát hình thái khuẩn lạc.
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
49
Hình 3.6: Hình thái khuẩn lạc chủng L1.3 trên sau 24h trên môi trường MRS
nuôi ở 340C
Hình 3.7: Hình thái tế bào của chủng L1.3 khi soi tươi ở vật kính 100X
L1.3
L1.3
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
50
Hình 3.8: Hình ảnh nhuộm gram chủng L1.3
Kết quả nuôi cho thấy:
Chủng L1.3 có khuẩn lạc tròn, có màu trắng đục sữa, bề mặt trơn bóng, kích
thước khuẩn lạc sau 24 giờ nuôi cấy khoảng 2,2 mm.
Chủng L1.3 Tế bào có dạng hình que dài 1-2μm, đứng đơn, xếp đôi, tạo chuỗi,
bắt màu tím của thuốc nhuộm gram. Kết luận chủng L1.3 là trực khuẩn, gram dương.
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
51
3.2.2. Đặc điểm sinh hóa
Song song với các thí nghiệm xác định đặc điểm hình thái của 2 chủng, chúng
tôi đồng thời tiến hành kiểm tra khả năng sinh axit lactic, khả năng tạo catalase, khả
năng di động của 2 chủng L1.2 và L1.3. Thử catalase bằng cách nhỏ H2O2 vào khuẩn
lạc, không thấy sủi bọt là catalase âm tính. Thử khả năng sinh axit lactic bằng phương
pháp cho tạo phức với phenol. Kiểm tra khả năng di động bằng phương pháp cấy đâm
sâu trên môi trường thạch đứng. Kết quả thử nghiệm khả năng di động được thể hiện
trên hình 3.9; hình 3.10 và khả năng lên men các lọai đường ở bảng 3.2:
Hình 3.9: Khả năng di động của chủng L1.2 và L1.3
Hình 3.10: Khả năng lên men các loại đường của chủng L1.2 và L1.3
L1.2 L1.3
L1.2 L1.3
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
52
Bảng 3.2: Kết quả thử các đặc tính của hai chủng L1.2 và L1.3
Kết quả thí nghiệm cho thấy L1.2 và L1.3: là những vi khuẩn có sinh axit lactic,
gram dương, catalase âm tính, không di động, không tạo bào tử.
Theo khóa phân loại Bergey có thể kết luận 2 chủng L1.2 và L1.3 đều là những
vi khuẩn lactic.
Hai chủng L1.2 và L1.3 được lựa chọn này sẽ đem đi là các thí nghiệm tiếp
theo.
3.3. Đặc tính nuôi cấy và đặc tính probiotic
3.3.1. Đường cong sinh trưởng của chủng L1.2 và L1.3
Xác định đường cong sinh trưởng của các chủng giúp ta kiểm soát quá trình
nuôi cấy và xác định thời gian thích hợp nhất cho quá trình thu sinh khối.
Chúng tôi tiến hành xác định đường cong sinh trưởng ở môi trường MRS lỏng,
pH 6,5 và nhiệt độ nuôi cấy là 370C ± 2. Được xác định đến 30h, cứ 3h lấy mẫu một
lần đo OD.
Chủng L1.2 L1.3
Khả năng sinh axit lactic + +
Gram + +
Khả năng di động - -
Hoạt tính catalase - -
Khả năng sử dụng các đường + +
Tinh bột 0 0
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
53
a)Chủng L1.2
0.34
2.31
2.442.43
2.35
2.422.462.41
2.13
1.71
0.83
0
0.5
1
1.5
2
2.5
3
0 5 10 15 20 25 30 35
Time (h)
O
D
(6
00
n
m
)
Hình 3.11: Mối tương quan giữa thời gian và OD600 nm của chủng L1.2
Nhìn vào hình 3.11 có thể thấy chủng L1.2 đạt đến pha cân bằng ở 18h. Mật độ
tế bào đạt giá trị lớn nhất ở 21 – 24h. Ở 27h – 30h tế bào bắt đầu già và chết dần. Nhự
vậy ta có thể thu sinh khối ở 21 – 24h.
b)Chủng L1.3
0.47
1.03
2.472.45
2.23
1.88
2.5 2.53 2.51 2.49
2.41
0
0.5
1
1.5
2
2.5
3
0 5 10 15 20 25 30 35
Time (h)
O
D
(6
00
)
Hình 3.12: Mối tương quan giữa thời gian và OD600 của chủng L1.3
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
54
Nhìn vào hình 3.12 có thể thấy chủng L1.3 đạt đến pha cân bằng ở 15h. Mật độ
tế bào đạt giá trị lớn nhất ở 18h – 21h. Ở 27h – 30h tế bào bắt đầu già và chết dần. Như
vậy ta có thể thu sinh khối ở 18 – 21h.
Qua kết quả trên chúng ta thấy cả 2 chủng đều bỏ qua giai đoạn thích ứng. Điều
này dễ giải thích bởi môi trường hoạt hóa giống không khác nhiều với môi trường lên
men. Giai đoạn phát triển logarit ngắn, điều này có lợi cho quá trình sản xuất thu sinh
khối, rút ngắn được thời gian lên men. Giai đoạn cân bằng dài chứng tỏ chủng có khả
năng duy trì phát triển tốt. Điều này thuận lợi cho quá trình sản xuất xử lý thu sinh
khối.
3.3.2 Ảnh hưởng của nhiệt độ đến sự phát triển của 2 chủng L1.2 và L1.3
Nhiệt độ có ảnh hưởng rất lớn đối với hoạt động sống của vi sinh vật. Ở nhiệt độ
thấp sẽ kéo dài thời gian sinh trưởng do đó kéo dài thời gian thu sinh khối. Còn ở nhiệt
độ quá cao chủng sẽ bị ức chế. Với mục đích thu sinh khối lớn trong thời gian ngắn ta
cần tìm nhiệt độ tối thích nhất cho chủng phát triển đạt yêu cầu mong muốn của nhà
sản xuất.
Để tìm khoảng nhiệt độ tối thích chúng tôi tiến hành lên men trong môi trường
MRS lỏng tại các khoảng nhiệt độ được khảo sát là: 300C; 340C; 370C và 400C. Với pH
là 6,5. Kết quả được đo sinh khối bằng phương pháp đo mật độ quang OD ở bước sóng
λ = 600nm.. Kết quả được trình bày ở hình 3.13:
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
55
2
2.5
3
25 27 29 31 33 35 37 39 41 43 45
Nhiệt độ
O
D
6
00
n
m
L1.2
L1.3
Hình 3.13 : Ảnh hưởng của nhiệt độ nuôi cấy lên sự sinh trưởng và phát
triển của chủng L1.2 và L1.3
Kết quả nghiên cứu cho thấy nhiệt độ ảnh hưởng đến sự phát triển của hai chủng
L1.2 và L1.3, hai chủng đều là các vi khuẩn ưa ấm
Đối với chủng L1.2 nhiệt độ tối thích cho sự phát triển của chủng là ở 35 -370C
mạnh nhất ở 370C , ở nhiệt độ từ 37 – 40oC chủng đã bị ức chế bởi nhiệt độ. Do vậy để
đáp ứng mục tiêu của sản xuất là sinh khối chúng tôi chọn nhiệt độ 370C làm nhiệt độ
thích hợp cho chủng L1.2 phát triển.
Chủng L1.3 phát triển tốt ở 33 - 350C và mạnh nhất ở 340C, sau 350C thì chủng
L1.3 phát triển kém dần. Chúng tôi chọn nhiệt độ 340C cho mục tiêu sản xuất thu sinh
khối của chủng L1.3.
3.3.3. Thời gian nuôi cấy
Trong nghiên cứu sản xuất chế phẩm việc xác định thời điểm thu nhận sinh khối
có vai trò rất quan trọng, nó không chỉ có ý nghĩa trong việc rút ngắn thời gian sản xuất
mà còn ảnh hưởng tới chất lượng chế phẩm sau này. Việc nghiên cứu thời gian nuôi
cấy được thực hiện trên môi trường MRS với tỷ lệ tiếp giống là 10%. Thực hiện quá
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
56
trình nuôi cấy tĩnh trong tủ ấm, chủng L1.2 nuôi ở 370C và chủng L1.3 nuôi ở 340C ,
theo dõi kết quả đo OD600nm sau thời gian từ 8h đến 40h.
0
0.5
1
1.5
2
2.5
3
0 10 20 30 40 50
Time (h)
O
D
60
0
nm L1.2
L1.3
Hình 3.14: Mối tương quan giữa thời gian nuôi cấy và mật độ tế bào sống của
hai chủng L1.2 và L1.3 ở OD600 nm.
Kết quả nghiên cứu cho thấy chủng L1.2 phát triển và cho sinh khối lớn nhất
trong khoảng từ 24 - 28 h nuôi cấy, chủng L1.3 cho sinh khối lớn nhất trong khoảng
thời gian từ 20 – 24h nuôi cấy. Thời gian này chậm so với đường cong sinh trưởng
khoảng 3h nuôi. Nguyên nhân dẫn đến sự chênh lệch này là do quá trình nuôi để lấy
sinh khối này được thực hiện trên thể tích lớn hơn rất nhiều ,so với thể tích nuôi để xác
định đường cong sinh trưởng là 200 ml thì thể tích nuôi sinh khối là 1 L. khi thể tích
nuôi cấy lớn thì sự ảnh hưởng của các chất ức chế như axit lên vi sinh vật sẽ yếu hơn vì
vậy thời gian phát triển để thu được sinh khối lớn nhất sẽ kéo dài hơn.
Từ kết quả trên, chúng ta sẽ xác định thời gian nuôi cấy thu nhận sinh khối trên
quy mô lớn hơn trên quy mô công nghiệp.
3.3.4. pH nuôi cấy
Tiến hành nghiên cứu ảnh hưởng của pH đến sự phát triển của 2 chủng L1.2 và
L1.3 trong môi trường MRS lỏng. Dải pH được khảo sát từ 4 – 8, chủng L1.2 được
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
57
nuôi cấy ở nhiệt độ 370C và chủng L1.3 nuôi ở 340C trong 48h. Cứ 3h lấy mẫu đo OD
một lần. Kết quả được biểu diễn trên hình 16, ở 24h.
2
2.1
2.2
2.3
2.4
2 3 4 5 6 7 8 9
pH
O
D
60
0n
m
L1.2
L1.3
Hình 3.15: Ảnh hưởng của pH lên sự sinh trưởng và phát triển của chủng L1.2
và L1.3
Từ hình 3.15 ta thấy rằng pH ảnh hưởng lớn đến quá trình sinh trưởng của cả 2
chủng.
Chủng L1.2 phát triển tối thích ở pH = 6 – 7 , tốt nhất ở pH = 7. Ở pH = 8 chủng
bắt đầu có dấu hiệu phát triển kém hơn Khoảng pH từ 5 – 6 chủng vẫn phát triển được
nhưng ở pH từ 4 – 4,5 sự phát triển của chủng đã bị ức chế.
Chủng L1.3 thì phát triển tốt ở pH = 6 – 7.5 và tối thích ở pH = 6.5. Ở pH = 8
chủng vẫn phát triển nhưng kém hơn, ở pH = 4 – 6 chủng phát triển yếu dần.
Qua khảo sát ta thấy rằng hai chủng phát triển tốt ở pH trung tính và hơi kiềm. Điều đó
chứng tỏ chủng rất thích hợp phát triển trong môi trường nước biển.
Dựa vào sự khảo sát pH chúng tôi chọn pH = 6,5-7 làm pH môi trường cho quá
trình lên men thu sinh khối 2 chủng L1.2 và L1.3.
3.3.5. Khả năng chịu mặn của hai chủng L1.2 và L1.3
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
58
Với mục đích ứng dụng các chủng vi khuẩn lactic làm chế phẩm probiotic cho
nuôi trồng thuỷ sản. Do vậy, ta cần kiểm tra khả năng chịu mặn của các chủng L1.2 và
L1.3. Thí nghiệm được kiểm tra trong môi trường MRS với độ mặn khác nhau. Kết quả
cho trên hình 3.16.
0
0.5
1
1.5
2
2.5
3
1 2 3 4 5
Nồng độ muối NaCl (%)
O
D
60
0n
m
L1.2
L1.3
Hình 3.16: Ảnh hưởng của nồng độ muối NaCl đến sự phát triển của chủng
L1.2 và L1.3
Chủng L1.2 có khả năng phát triển ở nồng độ muối 5%. Sự phát triển của chủng
tỷ lệ nghịch với độ mặn của môi trường.
Chủng L1.3 có khả năng chịu mặn yếu hơn, mật độ tế bào giảm dần ở các nồng
độ muối cao hơn và đến 5% muối thì sự phát triển của chủng L1.3 rất yếu ( OD600 =
0.95). Tuy nhiên ở nồng độ muối 1% thì chủng phát triển yếu hơn ở nồng độ muối 2%,
điều này chứng tỏ nồng độ muối NaCl có ảnh hưởng đến sự phát triển của L1.3.
Chúng ta nhận thấy 2 chủng đều có khả năng chịu mặn khá tốt, đặc biệt chủng
L1.2 có khả năng chịu mặn tương đối cao 5%( so với độ mặn trung bình của nước biển
là khoảng 3%). Đây là đặc tính quý khi sử dụng các chủng này làm chế phẩm cho
NTTS ở các vùng khác nhau.
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
59
KẾT LUẬN VÀ KIẾN NGHỊ
Kết luận
1. Từ các mẫu cá chim vây vàng được lấy từ Trại cá Trường đại học thủy
sản Nha Trang (tại Vũng Ngán – Nha Trang – Khánh Hòa) phân lập được 5
chủng Lactobacillus có hoạt tính kháng 7 chủng Vibrio spp.
2. Trong năm chủng có hoạt tính kháng Vibrio spp , hai chủng L1.2 và L1.3
có hoạt tính kháng mạnh nhất sau 24h nuôi cấy.
3. Các điều kiện thích hợp cho 2 chủng phát triển:
- Chủng L1.2: nhiệt độ 370C, pH= 6.5 - 7 , thời gian thu sinh khối 24 -
28h, khả năng chiu mặn đến 5%.
- Chủng L1.3: nhiệt độ thích hợp 340C, pH= 6 - 7, thời gian thu sinh
khối 20 – 24h, khả năng chịu mặn đến 5%.
4. Hai chủng L1.2 và L1.3 được nghiên cứu có các đặc điểm sinh học của
chi vi khuẩn Lactobacillus gồm: hình que, không di động, sinh axit lactic, lên
men các loại đường (glucose, saccharose, sucrose, mantose, manitol, sorbitol).
Kiến nghị
Hướng nghiên cứu tiếp theo:
1. Sử dụng hai chủng L1.2 và L1.3 vào chế phẩm probiotic để thử nghiệm
invivo trên cá chim vây vàng.
2. Nghiên cứu sâu hơn về cơ chế kháng khuẩn của các chủng Lactobacillus
3. Giải trình tự gene hai chủng Lactobacillus nói trên
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
60
TÀI LIỆU THAM KHẢO
Tài liệu Tiếng Việt:
1. Bộ thủy sản (2004), “Sổ tay kiểm nghiệm vi sinh vật thực phẩm thủy sản, dự án cải
thiện chất lượng và xuất khẩu thủy sản”, NXB nông nghiệp Hà Nội, Hà Nội, 296 tr.
2. Bùi Trọng Khiêm, (2008) “Tìm hiểu kỹ thuật ương giống cá chim vây vàng
(Trachinotus blochii Lacepede, 1801) tại Trại Thực nghiệm sản xuất Hải sản -
Vĩnh Hòa - Nha Trang”. 41 tr
3. Nguyễn Văn Sơn, (2008) “Kỹ thuật nhân tạo sản xuất giống cá chim vây vàng
(Trachinotus blochii Lacepede, 1801) tại trại thực nghiệm Trường Cao Đẳng
Thủy Sản – Yên Hưng – Quảng Ninh”. tr 6 – 9.
4. Trần Duy Thiết, (2004) “ Nghiên cứu ứng dụng chủng Lactobacillus
acidopillus trong sản xuất chế phẩm sinh học (BIOF) dùng trong phòng và trị
bệnh cho tôm cá”. 54 tr
5. Đỗ Thị Hòa, Bùi Quang Tề, Nguyễn Hữu Dũng và Nguyễn Thị Muội (2004),
“Bệnh học thủy sản”, NXB Nông nghiệp Tp. Hồ Chí Minh, Tp. Hồ Chí Minh, tr.
224 – 231.
6. Đỗ Thị Hòa, Trần Vỹ Hích, Nguyễn Thị Thùy Giang, Phan Văn Út, Nguyễn
Thị Nguyệt Huệ “Các loại bệnh thường gặp trên cá biển nuôi Khánh Hòa” Tạp
chí Khoa học và Công nghệ Thủy sản số 02/2008 – Đại học Nha Trang, tr. 16 –
24.
7. Trần Vĩ Hích, Phạm Thị Duyên “Bệnh tử hoại thần kinh trên cá biển nuôi tại
Khánh Hòa” Tạp chí Khoa học –Công nghệ Thủy Sản số 01/2008 – Đại học Nha
Trang, tr 19 – 24.
8. Lương Đức Phẩm (1998), Công nghệ vi sinh vật, Nhà xuất bản nông nghiệp,
Hà Nội, 358 tr.
9. Trần Linh Thước (2007), Phương pháp phân tích vi sinh vật trong nước, thực
phẩm và mĩ phẩm, Nhà xuất bản giáo dục, 232 tr
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
61
Tài liệu nước ngoài:
1. Bernet MF, Brassart D, Neeser JR, Servin AL, (1994) “Lactobacillus
acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell
attachment and cell invasion by enterovirulent bacteria” Gut 35, pp 483-489.
2. Briggs, M. R. P. & Funge-Smith, S. J.,(1994) “A nutrient budget of some
intensive marine shrimp ponds in Thailand” Aquaculture and Fisheries
Management. 25, pp 789-811.
3. Carvalho, A.S. Silva. J, Ho. P. Teixeia, F. X. Gibbs, (2004). Relevant factor
for the preparation of freeze-died lactic acid bacteria. International Dairy
Journal, 14, 835-847, Elsrier Science B.V.
4. De Man. J.C., Rogosa, M and Sharpe, M.E. (1960) “A medium for the
cultivation of Lactobacilli”. Journal of applied bacteriology. 23: pp 130-135.
5. Direkbusarakom, S., Yoshimizu, M., Ezura, Y., Ruangpan, L., Danayadol
Y., (1998) “Vibrio spp. the dominant flora in shrimp hatchery against some
fish pathogenic viruses” J. Mar. Biotechnol. 6, pp 266–267.
6. Ho Phu Ha and Michelle Cartherine Adams, (2007). “Selection and
identifinication of a novel probiotic strans of Lactobacillus fermentum isolated
from Vietnamese fermented food”. School of Enviromental and Life Science,
Faculty of Science and Information Technology, The University of Newcastle,
Australia.
7. Hollang, K. T., J. S. Knapp, and J. G. Shoesmith. (1987) “Anaerobic
Bacteria” 1st ed. Blackie and Son, Ltd., London.
8. Kamei, Y., Yoshimizu, M., Ezura Y., Kimura, T., (1988) ” Screening of
bacteria with antiviral activity from fresh water salmonid hatcheries”
Microbiol Immunol. 32, pp 67–73.
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
62
9. Kenneth H. Wilson and Fulvio Perin2, (1998) “Role of Competition for
Nutrients in Suppression of Clostridium dijficile by the Colonic Microflora”.
INFECTION AND IMMUNITY, Oct. 1988, p 2610-2614.
10. LARS AXELSSON, (2004), “Lactic Acid Bacteria: Classification and
Physiology”. MATFORSK, Norwegian Food Research Institute, As, Norway.
11. Mack DR, Michail S, Wei S, Wei S, Macdougal L, Hollingsworth MA,
(1999) “Probiotics inhibit enteropathogenic E. coli adherence in vitro by
inducing intestinal mucin gene expression” Am J Physiol 39, pp 941-950.
12. Mishra, C. and J. Lambert. (1996) “Production of anti-microbial substances
by probiotics” Asia Pacific J Clin Nutr 5, pp 20–24.
13. Nikoskelainen S, Ouwehand AC, Salminen S, Bylund G, (2001)
“Protection of rainbow trout(Oncorhynchus mykiss) from furunculosis by
Lactobacillus rhamnosus” Aquaculture 2001b;198:pp 229-236.
14. O’Sullivan, D. J. and M. J. Kullen. (1998) “Tracking of probiotic
bifidobacteria in the intestine” Intl Dairy J 8: pp 513–525.
15. Patricia Neysens, Winy Messens, Luc De Vuyst, (2003) “Effect of sodium
chloride on growth and bacteriocin production by Lactobacillus amylovorus
DCE 471” International Journal of Food Microbiology 88, pp 29– 39.
16. Porter, C. B., Krom, M. D., Robbins, M. G., Brickel, L. & Davidson, A,
(1987) “Ammonia excretion and total N budget for Gilthead Seabream (Sparus
aurata) and its effect of water quality conditions” Aquaculture. 66, pp 287-
297.
17. Prieur, G., Nicolas, J.L., Plusquellec, A., Vigneulle M., (1990) “Interactions
between bivalves molluscs and bacteria in the marine environment”.
Oceanogr. Mar. Biol. Annu. Rev. 28, pp 227–352.
18. Sakata, T., (1990) “Microflora in the digestive tract of fish and shellfish” In:
Lesel, R. (Ed.), Microbiology in Poecilotherms. Elsevier, Amsterdam, pp
171–176.
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
63
19. Saurabh S, Choudhary AK and Sushma GS (2005) “Concept of probiotics
in aquaculture”. Fishing Chimes 25, pp 19–22.
20. Srikanjana Klayraung, Helmut Viernstein, Jakkapan Sirithunyslug,
Siriporn Okonogi(2008) “Probiotic Properties of Lactobacilli Isolated from
Thai Traditional” Sci Pharm 76: pp 485–503.
21. Tanaka S, I Kuriyama, T Nakai and Miyazaki (2003) “Susceptibility of
cultured juveniles of several marine fish to the sevenband grouper nervous
necrosis virus”. Journal of fish diseases 26, pp 109-115.
22. Teruo Higa, (2002). “Technology of Effective Microorganisms”. Concept
and Phisiology. Royal Agricultural College, Cirencester, UK.
23. Thompson, J.; Chassy, B.M.(1981) “Uptake and metabolism of sucrose by
Streptococcus lactis”. J. Bacteriol. 1981, 147, pp 543–551
24. Wu, R.,(1995) “The environmental impact of marine fish culture: toward a
sustainable future” Mar Pollut Bull. 31, pp 159-166.
GVHD: Th.s Lê Đình Đức SVTH: Lê Thanh Huân
64
Các file đính kèm theo tài liệu này:
- Phân lập, tuyển chọn và đánh giá một số đặc tính của một số chủng lactobacillus trên cá chim vây vàng.pdf